Токовые нагрузки на провода: Таблицы токовых нагрузок

Таблицы токовых нагрузок

Длительно допустимый ток регламентируют Правилами устройства электроустановок.
Значения этих нагрузок приведены в таблицах из расчета нагрева жил до температуры +65°С при температуре
окружающего воздуха +25°С.

Провода с резиновой и полихлорвиниловой изоляцией с медными жилами
Сечение токопроводящей жилы, мм²Сила тока, А, для проводов, проложенных
открытов одной трубе
два одножильныхтри одножильныхчетыре одножильныходин двухжильныйодин трехжильный
0.511
0.7515
1171615141514
1.5231917161815
2.5302725252521
4413835303227
6504642404034
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
Провода с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм²Сила тока, А, для проводов, проложенных
открытов одной трубе
два одножильныхтри одножильныхчетыре одножильныходин двухжильныйодин трехжильный
2. 5242019191916
4322828232521
6393632303126
10605047394238
16766060556055
251058580707565
3513010095859575
50165140130120125105
Провода с медными жилами с резиновой изоляцией, в металлических защитных оболочках и кабели с медными
жилами с резиновой изоляцией в поливинилхлоридной наиритовой или резиновой оболочках, бронированные и
небронированные
Сечение токопроводящей жилы, мм²Сила тока, А, на кабели
одножильныедвухжильныетрехжильные
при прокладке
в воэдухев воэдухев землев воэдухев земле
1.52319331927
2.53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
Кабели с алюминиевыми жилами с резиновой или пластмассовой изоляцией в поливинилхлоридной и резиновой
оболочках, бронированные и небронированные.

Сечение токопроводящей жилы, мм²Сила тока, А, на кабели
одножильныедвухжильныетрехжильные
при прокладке
в воэдухев воэдухев землев воэдухев земле
2.52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
Шнуры переносные шланговые легкие и средние, кабели переносные шланговые
сечение токопроводящей жилы, мм²Сила тока, А, на шнуры, провода и кабели
одножильныедвухжильныетрехжильные
0.512
0.751614
11816
1. 52320
2.5403328
4504336
5655545
10907560
161209580
25160125105
35190150130
50235185160

Зависимость сечения кабеля и провода от токовых нагрузок и мощности

При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.

Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум  — только 4 ампера, а медный провода  10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.

Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
















Медные жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033,0
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066,0260171,6















Алюминиевые жилы проводов и кабелей

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
105011,03925,7
166013,25536,3
258518,77046,2
3510022,08556,1
5013529,711072,6
7016536,314092,4
9520044,0170112,2
12023050,6200132,0





























Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
0,511
0,7515
1171615141514
1,2201816151614,5
1,5231917161815
2262422202319
2,5302725252521
3343228262824
4413835303227
5464239343731
6504642404034
8625451464843
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250
150440360330
185510
240605
300695
400830
























Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190
150340275255
185390
240465
300535
400645





















Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,

найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток*, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605

* Токи относятся к кабелям и проводам с нулевой жилой и без нее.




















Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм.Ток, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
2,52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
70210165245140210
95250200295170255
120295230340200295
150340270390235335
185390310440270385
240465

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.








Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
Сечение медных жил проводов и кабелей, кв.ммДопустимый длительный ток нагрузки для проводов и кабелей, АНоминальный ток автомата защиты, АПредельный ток автомата защиты, АМаксимальная мощность однофазной нагрузки при U=220 BХарактеристика примерной однофазной бытовой нагрузки
1,51910164,1группа освещения и сигнализации
2,52716205,9розеточные группы и электрические полы
43825328,3водонагреватели и кондиционеры
646324010,1электрические плиты и духовые шкафы
1070506315,4вводные питающие линии

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.






Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, кв.мм
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4

Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.

ТОКОВЫЕ НАГРУЗКИ НА ПРОВОДА, ШИНЫ И КАБЕЛИ

РАСЧЕТ  И

ПРОЕКТИРОВАНИЕ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ: СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО

ЭЛЕКТРООБОРУДОВАНИЮ

Скачать книгу по электроснабжению в формате

MS Word

СОДЕРЖАНИЕ

Длительно допустимые токовые

нагрузки на неизолированные провода и шины приведены в таблицах 3.1–3.4.

Они приняты исходя из допустимой температуры их нагрева до 70°

С при температуре окружающей среды 25°

С. При расположении шин прямоугольного сечения шириной до 60 мм плашмя

токовые нагрузки, указанные в таблицах 3.2, 3.3 и 3.4, необходимо

уменьшить на 5 %, а шин шириной более 60 мм – на 8 %.

Таблица 3.1

Длительно допустимый ток для неизолированных

проводов

Сечение, мм2

Наружный диаметр, мм

Сечение (алюминий/сталь), мм2

Ток

Iд,

А, для проводов марок

Сопротивление постоянному току при 20°

С, r0,

Ом/км

А и М

АС

АС, АСКС, АСК, АСКП

М

А и АКП

М

А и АКП

М

АС, АСК, АСКП

вне помещений

внутри помещений

вне помещений

внутри помещений

1

2

3

4

5

6

7

8

9

10

11

12

10

3,5

4,4

10/1,8

84

53

95

60

1,79

3,16

16

5,1

5,4

16/2,7

111

79

133

105

102

75

1,13

1,80

25

6,3

6,6

25/4,2

142

109

183

136

137

106

0,72

1,176

35

7,5

8,3

35/6,2

175

135

223

170

173

130

0,515

0,79

50

9,6

9,9

50/8

210

165

275

215

219

165

0,36

0,6

70

10,6

11,7

70/11

265

210

337

265

268

210

0,27

0,43

95

12,4

13,9

95/16

330

260

422

320

341

255

0,19

0,30

120

14,0

15,3

120/19

120/27

390

375

313

485

375

395

300

0,154

0,245

0,249

150

15,8

17

150/19

150/24

150/34

450

450

450

365

365

570

440

465

355

0,122

0,195

0,194

0,196

185

17,5

19,1

185/24

185/29

185/43

520

510

515

430

425

650

500

540

410

0,099

0,154

0,159

0,156

240

20,1

21,5

240/32

240/39

240/56

605

610

610

505

505

760

590

685

490

0,077

0,118

0,122

0,12

300

22,2

24,4

300/39

300/48

300/66

710

690

680

600

585

880

680

740

570

0,063

0,096

0,098

0,10

окончание табл. 3.1

1

2

3

4

5

6

7

8

9

10

11

12

400

25,6

27,8

400/22

400/51

400/64

830

825

860

713

705

1050

815

895

690

0,047

0,073

0,073

0,074

500

500/27

500/64

960

945

830

815

980

820

600

600/72

1050

920

1100

955

700

700/86

1180

1040

Таблица 3. 2

Токовая нагрузка на

стальные шины прямоугольного сечения

Размер, мм

Ток, А

Размер, мм

Ток, А

Ширина

Толщина

Ширина

Толщина

16

2,5

55/70

100

3

305/460

20

2,5

60/90

20

4

70/115

25

2,5

75/110

22

4

75/125

20

3

65/100

25

4

85/140

25

3

80/120

30

4

100/165

30

3

95/140

40

4

130/220

40

3

125/190

50

4

165/270

50

3

155/230

60

4

195/325

60

3

185/280

70

4

225/375

70

3

215/320

80

4

260/430

75

3

230/345

90

4

290/480

80

3

245/365

100

4

325/535

90

3

275/410

Примечание.

В числителе указана токовая нагрузка при работе на переменном, а в

знаменателе – на постоянном токе.

Таблица 3.3

Токовая нагрузка на медные шины прямоугольного

сечения при различном числе полос на полюс или фазу

Размер, мм

Ток, А

Ширина

Толщина

1

2

3

4

15

3

210

20

3

275

25

3

340

30

4

475

40

4

625

–/1090

40

5

700/705

–/1250

50

5

860/870

–/1525

–/1895

50

6

955/960

–/1700

–/2145

60

6

1125/1145

1740/1990

2240/2495

80

6

1480/1510

2110/2630

2720/3220

окончание табл. 3.3

100

6

1810/1875

2470/3245

3170/3940

60

8

1320/1345

2160/2485

2790/3020

80

8

1690/1755

2620/3095

3370/3850

100

8

2080/2180

3060/3810

3930/4690

120

8

2400/2600

3400/4400

4340/5600

Длительно допустимые нагрузки проводов и кабелей с резиновой или пластмассовой изоляцией

Подробности
Категория: Кабели

Длительно допустимые токовые нагрузки проводов и кабелей с резиновой или пластмассовой изоляцией*, А

Сечение жилы, мм2

Вид прокладки, материал и число жил

В земле

В воздухе

Медь

Алюминий

Медь

Алюминий

две

три

две

три

одна

две

три

одна

две

три

2,5

44

38

34

29

30

27

25

23

21

19

4

55

49

42

38

41

38

35

31

29

27

6

70

60

55

46

50

50

42

38

38

32

10

105

90

80

70

80

70

55

60

55

42

16

135

115

105

90

100

90

75

75

70

60

25

175

150

135

115

140

115

95

105

90

75

35

210

180

160

140

170

140

120

130

105

90

50

265

225

205

175

215

175

145

165

135

110

70

320

275

245

210

270

215

180

210

165

140

95

385

330

395

255

325

260

220

250

200

170

120

445

385

340

295

385

300

260

295

230

200.

150

505

435

390

335

440

350

305

340

270

235

185

570

500

440

385

510

405

350

390

310

270

* Провода с медными жилами в металлических защитных оболочках, кабели с медными н алюминиевыми жилами в свинцовой, поливинилхлоридной, полиэтиленовой, резиновой оболочках, бронированные н небронированные.

Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией

1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 — 1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15 º С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).
Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5, как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6 — 1.3.8, как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5, как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0, 68 для 5 и 6; 0, 63 для 7 — 9 и 0, 6 для 10 — 12 проводов.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать как для проводов, проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4 — 1.3.7, как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

Таблица 1.3.4.

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одно жильных

трех одно жильных

четырех одно жильных

одного двух жильного

одного трех жильного

0,5

11

0,75

15

1

17

16

15

14

15

14

1,2

20

18

16

15

16

14,5

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50

16

100

85

80

75

80

70

25

140

115

100

90

100

85

35

170

135

125

115

125

100

50

215

185

170

150

160

135

70

270

225

210

185

195

175

95

330

275

255

225

245

215

120

385

315

290

260

295

250

150

440

360

330

185

510

240

605

300

695

400

830

Таблица 1. 3.5.

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

16

75

60

60

55

60

55

25

105

85

80

70

75

65

35

130

100

95

85

95

75

50

165

140

130

120

125

105

70

210

175

165

140

150

135

95

255

215

200

175

190

165

120

295

245

220

200

230

190

150

340

275

255

185

390

240

465

300

535

400

645

Таблица 1. 3.6.

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Сечение токопроводящей жилы, мм2

Ток*, А, для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

1,5

23

19

33

19

27

2,5

30

27

44

25

38

4

41

38

55

35

49

6

50

50

70

42

60

10

80

70

105

55

90

16

100

90

135

75

115

25

140

115

175

95

150

35

170

140

210

120

180

50

215

175

265

145

225

70

270

215

320

180

275

95

325

260

385

220

330

120

385

300

445

260

385

150

440

350

505

305

435

185

510

405

570

350

500

240

605

Таблица 1. 3.7.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных*

Сечение токопроводящей жилы, мм2

Ток, А, для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

2,5

23

21

34

19

29

4

31

29

42

27

38

6

38

38

55

32

46

10

60

55

80

42

70

16

75

70

105

60

90

25

105

90

135

75

115

35

130

105

160

90

140

50

165

135

205

110

175

70

210

165

245

140

210

95

250

200

295

170

255

120

295

230

340

200

295

150

340

270

390

235

335

185

390

310

440

270

385

240

465

Таблица 1. 3.8.

Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток*, А, для шнуров, проводов и кабелей

одножильных

двухжильных

трехжильных

0,5

12

0,75

16

14

1,0

18

16

1,5

23

20

2,5

40

33

28

4

50

43

36

6

65

55

45

10

90

75

60

16

120

95

80

25

160

125

105

35

190

150

130

50

235

185

160

70

290

235

200

Таблица 1.3.9.

Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

0,5

3

6

6

44

45

47

10

60

60

65

16

80

80

85

25

100

105

105

35

125

125

130

50

155

155

160

70

190

195

Таблица 1. 3.10.

Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

Сечение токопроводящей жилы, мм2

Ток*, А, для кабелей напряжением, кВ

3

6

3

6

16

85

90

70

215

220

25

115

120

95

260

265

35

140

145

120

305

310

50

175

180

150

345

350

Таблица 1.3.11.

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1, 3 и 4 кВ

Сечение токопроводящей жилы, мм2

Ток, А

Сечение токопроводящей жилы, мм2

Ток, А

Сечение токопроводящей жилы, мм2

Ток, А

1

20

16

115

120

390

1,5

25

25

150

150

445

2,5

40

35

185

185

505

4

50

50

230

240

590

6

65

70

285

300

670

10

90

95

340

350

745

Таблица 1. 3.12.

Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов и кабелей, питающих

одножильных

многожильных

отдельные электроприемники с коэффициентом использования до 0, 7

группы электроприемников и отдельные приемники с коэффициентом использования более 0, 7

Многослойно и пучками

До 4

1,0

2

5-6

0,85

3-9

7-9

0,75

10-11

10-11

0,7

12-14

12-14

0,65

15-18

15-18

0,6

Однослойно

2-4

2-4

0,67

5

5

0,6

Токовые нагрузки на кабели и провода

Токовые нагрузки, установленные в действующихнормативных документах по использованию кабелей и проводов вэлектрических сетях, указаны в таблицах 1 — 11. Указанные значениятоков приведены для температур окружающего воздуха +25°С и земли +15°С для усредненных условий прокладки. В случае необходимости выбораконкретной токовой нагрузки для конкретного типа кабеля или провода иконкретных условий прокладки, необходимо руководствоваться методиками,указанными в стандартах и правилах.

Таблица 1. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с медными жилами, А

Сечение токопроводящей жилы, мм2Для проводов, проложенных
открытов одной трубе
двух одножильныхтрех одножильныхчетырех одножильныходного двухжильногоодного трехжильного
0,511
0,7515
1171615141514
1,5231917161815
2,5302725252521
4413835303227
6504642404034
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250

Таблица 2. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами, А

Сечение токопроводящей жилы, мм2Для проводов, проложенных
открытов одной трубе
двух одножильныхтрех одножильныхчетырех одножильныходного двухжильногоодного трехжильного
2,5242019191916
4322828232521
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190

Таблица 3. Длительно допустимый ток для гибких кабелей и проводов с резиновой изоляцией, А

Сечение токопроводящей жилы, мм2ОдножильныеДвухжильныеТрехжильные
0,512
0,751614
1,01816
1,52320
2,5403328
4504336
6655545
10907560
161209580
25160125105
35190150130
50235185160
70290235200

Таблица 4. Допустимый длительный токдля проводов с медными жилами с резиновой изоляцией дляэлектрифицированного транспорта 1, 3 и 4 кВ, А

Сечение токопроводящей жилы, мм2ТокСечение токопроводящей жилы, мм2ТокСечение токопроводящей жилы, мм2Ток
12016115120390
1,52525150150445
2,54035185185505
45050230240590
66570285300670
109095340350745

Таблица 5. Допустимый длительный токдля кабелей с медными жилами с бумажной пропитанной изоляцией на низкоенапряжение в свинцовой оболочке, прокладываемых в земле, А

Сечение токопроводящей жилы, мм2Для кабелей
одножильных до 1 кВдвухжильных до 1 кВтрехжильных напряжением, кВчетырехжильных до 1 кВ
доЗ610
68070
10140105958085
1617514012010595115
25235185160135120150
35285225190160150175
50360270235200180215
70440325285245215265
95520380340295265310
120595435390340310350
150675500435390355395
185755490440400450
240880570510460
3001000
4001220
5001400
6251520
8001700

Таблица 6. Допустимый длительный токдля кабелей с медными жилами с бумажной пропитанной изоляцией на низкоенапряжение в свинцовой оболочке, прокладываемой в воздухе, А

Сечение токопроводящей жилы, мм2Для кабелей
одножильных до 1 кВдвухжильных до 1 кВтрехжильных напряжением, кВчетырехжильных до 1 кВ
до 3610
65545
109575605560
161209580656080
251601301059085100
35200150125110105120
50245185155145135145
70305225200175165185
95360275245215200215
120415320285250240260
150470375330290270300
185525375325305340
240610430375350
300720
400880
5001020
6251180
8001400

Таблица 7. Допустимый длительный токдля кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией нанизкое напряжение в свинцовой оболочке, прокладываемых в земле, А

Сечение токопроводящей жилы, мм2Для кабелей
одножильных до 1 кВдвухжильных до 1 кВтрехжильных напряжением, кВчетырехжильных до 1 кВ
до 3610
66055
1011080756065
1613511090807590
2518014012510590115
35220175145125115135
50275210180155140165
70340250220190165200
95400290260225205240
120460335300260240270
150520385335300275305
185580380340310345
240675440390355
300770
400940
5001080
6251170
8001310

Таблица 8. Допустимый длительный токдля кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией нанизкое напряжение в свинцовой оболочке, прокладываемых в воздухе, А

Сечение токопроводящеи жилы, мм2Для кабелей
одножильных до 1 кВдвухжильных до 1 кВтрехжильных напряжением, кВчетырехжильных до 1 кВ
до З610
64235
107555464245
16907560504660
2512510080706575
3515511595858095
50190140120110105110
70235175155135130140
95275210190165155165
120320245220190185200
150360290255225210230
185405290250235260
240470330290270
300555
400675
500785
625910
8001080

Таблица 9. Допустимый длительный ток для кабелей с медными жилами с пластмассовой изоляцией на напряжение до 3 кВ, А

Номинальное сечение жилы, мм2ОдножильныхДвухжильныхТрехжильных
на воздухев землена воздухеdв землена воздухев земле
1,5293224332128
2,5404233442837
4535444563748
6676756714958
10918975946677
1612111610112387100
25160148134157115130
35197178166190141158
50247217208230177192
70318265226237
95386314274280
120450358321321
150521406370363
185594455421406
240704525499468

Таблица 10. Допустимый длительный ток для кабелей с алюминиевыми жилами с пластмассовой изоляцией на напряжение до 3 кВ, А

Номинальное сечение жилы, мм2ОдножильныхДвухжильныхТрехжильных
на воздухев землена воздухев землена воздухев земле
2,5303225332128
4404134432937
6515243543744
10696858725059
16938377946777
2512211310312088100
35151136127145109121
50189166159176136147
70233200167178
95284237204212
120330269236241
150380305273274
185436343313308
240515396369355

Таблица 11. Допустимый длительный ток для кабелей с пластмассовой изоляцией на напряжение 6 кВ, А

Номинальное сечение жилы, мм2С алюминиевой жилойС медной жилой
на воздухев землена воздухев земле
1050556570
1665708592
258590110122
5105110135147
50125130165175
70155160210215
95190195255260
120220220300295
150250250335335
185290285285380
240345335460445

Допустимые токовые нагрузки | ЭлектроСантехМонтаж

Длительно допустимые токовые нагрузки (токи) в А на провода и шнуры с резиновой и поливинилхлоридной изоляцией, а также на неизолированные провода воздушных линий

ндартная площадь сечения провода, мм2 Медные изолированные провода Алюминиевые изолированные провода Неизолированные провода вне помещения
Открытая проводка Три провода в трубе Открытая проводка Три провода в трубе Медные марки М Алюминиевые марки А Стальные марки ПО
0,5 11
0,75 15
1,0 17 15

Стандартная площадь сечения провода, мм2 Медные изолированные провода Алюминиевые изолированные провода Неизолированные провода вне помещения
Открытая проводка Три провода в трубе Открытая проводка Три провода в трубе Медные марки М Алюминиевые марки А Стальные марки ПО
1. 5 23 17
2,5 30 24 24 19
4,0 41 35 32 28 50
6,0 50 42 39 32 70
10,0 80 60 55 47 95
16 100 80 80 60 130 105
25 140 100 105 80 180 135 60
35 170 125 130 95 220 170 75
50 215 170 165 130 270 215 90
70 270 210 210 165 340 265 125
95 330 225 225 200 415 320 135
120 385 290 295 220 485 375

Допустимые токовые нагрузки на алюминиевые провода с резиновой и поливинилхлоридной изоляцией в А

Сечение токопрово- дящей жилы, мм2 Провода, проложенные в одной трубе
Провода, проложенные открыто Два одножильных Три одножильных Четыре одножильных Один двухжильный Один трех-жильный
2,0 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
со 46 43 40 37 38 32
10 60 50 47 39 42 38

Допустимые токовые нагрузки в А на медные провода с резиновой изоляцией в металлических защитных оболочках и кабели с медными жилами, с резиновой изоляцией в свинцовой, поливинилхлоридной, наиритовой или резиновой оболочках, бронированные и небронированные, с заземляющей жилой и без нее

Сечение токопро-водящей жилы, мм2 Провода и кабели _
Одножильные Двухжильные Трехжильные__
При прокладке _____
в воздухе в воздухе в земле в воздухе в земле
1 2 3 4 5 6
1,5 23 19 33 19 27
Сечение токопро-водящей жилы, мм2 Провода и кабели
Одножильные Двухжильные Трехжильные
При прокладке
в воздухе в воздухе в земле в воздухе в земле
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90

Допустимые токовые нагрузки в А на медные провода и шнуры с резиновой или поливинилхлоридной изоляцией

Сечение токопрово- дящей жилы, мм2 Провода, проложенные в одной трубе
Провода, проложенные открыто Два одножильных Три одножильных Четыре одножильных Один двухжильный Один трех-жильный
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1. 5 23 19 17 16 18 15
2,0 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
со 62 54 51 46 48 43
10 80 70 60 50 55 50

Допустимые токовые нагрузки в А на кабели с алюминиевыми жилами, с резиновой или пластмассовой изоляцией в алюминиевой, свинцовой, поливинилхлоридной или резиновой оболочках, бронированные и небронированные

Сечение токопро-водящей жилы, мм2 Провода и кабели
Одножильные Двухжильные Трехжильные
При прокладке
в воздухе в воздухе в земле в воздухе в земле
1 2 3 4 5 6
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70

Кабель обычно состоит из 2-4 жил. Сечение (точнее, площадь поперечного сечения) жилы определяется ее диаметром. Исходя из практических соображений при малых значениях силы тока сечение медной жилы берут не менее 1 мм2, а алюминиевой — 2 мм2. При достаточно больших токах сечение провода выбирают по подключаемой мощности. Обычно исходят из расчета, что нагрузка величиной 1 кВт требует 1,57 мм2 сечения жилы. Отсюда следуют приближенные значения сечений провода, которых следует придерживаться при выборе его диаметра. Для алюминиевых проводов это 5 А на 1 мм2, для медных — 8 А на 1 мм2.

Проще говоря, если у вас стоит проточный водонагреватель на 5 кВт, то подключать его надо проводом, рассчитанным не менее чем на 25 А, и для медного провода сечение должно быть не менее 3,2 мм2.

Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; б мм2 и т. д.) для алюминиевых проводов сечение выбирают на ступень выше, чем для медных, так как их проводимость составляет примерно 62% от проводимости медных. Например, если по расчетам для меди нужна величина сечения 2,5 мм2, то для алюминия следует брать 4 мм2, если же для меди нужно 4 мм2, то для алюминия — б мм2 и т. д.

Значение электрической линии и нагрузки

В сфере электротехники термины «линия» и «нагрузка» являются сокращенными словами, которые относятся к проводам, которые передают мощность от источника к устройству (линии), по сравнению с проводами, передающими энергию другим устройствам дальше по цепи ( нагрузка). Ряд других более разговорных терминов также используется для описания того же самого, например, входящие и исходящие провода или восходящий и нисходящий потоки.

Эти термины используются в контексте одного устройства и электрической коробки, так что провода, которые подают питание в коробку, описываются как линейные провода, входящие провода или входящие провода, в то время как провода, идущие дальше к другим устройствам, являются описывается как нагрузка, нисходящий или исходящий провод. И эти термины относятся к расположению устройства в цепи, поскольку провод нагрузки для одной розетки становится линейным проводом для следующей розетки, расположенной ниже по цепи.

Термины «линия» и «нагрузка» имеют ряд применений в разных частях электрической системы.

Сервисный вход и главная панель

Входящее питание от энергокомпании поступает на линию электросчетчика. Он покидает счетчик со стороны нагрузки, а затем питает линейную сторону панели отключения или электрического обслуживания.Сервисная панель также имеет соединения линии и нагрузки — линия питает главный выключатель в панели, в то время как отдельные автоматические выключатели ответвления могут считаться нагрузкой по отношению к главному выключателю.

Цепи

Розетки (розетки), выключатели, осветительные приборы и другие электрические устройства обычно подключаются в виде нескольких проводов в одну цепь. С первым устройством линия — это провод, идущий от сервисной панели к устройству, а нагрузка — это провод, идущий от первого устройства ко второму устройству, расположенному ниже по цепи.На втором устройстве линия представляет собой источник питания, поступающий от первого устройства; нагрузка — это провод, идущий к третьему устройству в цепи, и так далее.

То же значение может относиться и к самому устройству. Линия розетки — это место, где вы подключаете входящий источник питания. Сторона нагрузки — это то место, где мощность покидает устройство (или электрическую коробку) и проходит по цепи.

Розетки GFCI

Линия и нагрузка имеют особое значение при подключении выходов прерывателя цепи замыкания на землю (GFCI).GFCI имеют две пары винтовых клемм для подключения проводов: одна пара обозначена LINE, а другая — LOAD. Подключение только к линейным клеммам приводит к тому, что розетка обеспечивает защиту GFCI только для этой розетки. Подключение линии и клемм нагрузки (с использованием двух электрических кабелей или двух наборов гибких проводов) обеспечивает защиту GFCI для этой розетки, а также для других стандартных розеток, расположенных ниже по потоку в той же цепи.

Другие значения словосочетаний «линия» и «нагрузка»

При подключении низковольтных цепей, например, питающих дверные звонки или ландшафтное освещение, «нагрузка» относится к частям цепи, которые находятся под полным домашним напряжением (обычно 120 вольт), чтобы отличить их от низковольтной проводки и устройств, которые используются после понижения напряжения на трансформаторе.

«Нагрузка» также является общим термином для описания потребности в электроэнергии или потребляемой мощности, которую устройство или прибор помещает в цепь. Например, в цепи освещения вы можете сложить максимальную мощность всех осветительных приборов в цепи, чтобы рассчитать «общую нагрузку» или максимальную потенциальную потребляемую мощность всех источников света.

electric — Что это значит, когда один провод идет в нагрузку, а один идет в линию

electric — Что это значит, когда один провод идет в нагрузку, а один идет в линию — Обмен стеками для дома

Сеть обмена стеков

Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange

  1. 0

  2. +0

  3. Авторизоваться
    Зарегистрироваться

Home Improvement Stack Exchange — это сайт вопросов и ответов для подрядчиков и серьезных домашних мастеров. Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено
169к раз

Я заменяю кухонные розетки на GFCI.Инспектор сказал мне, что мне просто нужно установить один на первой розетке в цепи. Я посмотрел на розетки по обе стороны от кухни; на одном конце и черный, и белый были подключены к узлам НАГРУЗКИ (и никакие провода не были подключены к ЛИНИИ), а розетка на другом конце кухни имела один провод, подключенный к ЛИНИИ, а другой — к НАГРУЗКЕ, но ни ЛИНИЯ, ни НАГРУЗКА были связаны как черное, так и белое.

Что это значит? Какая сторона первая в цепи? Это вообще было правильно подключено? Как мне подключить новые розетки?

Тестер101

1,955 33 золотых знака1112 серебряных знаков569569 бронзовых знаков

Создан 29 сен.

A OA O

33422 золотых знака55 серебряных знаков1111 бронзовых знаков

Линия — это сторона устройства, к которой подключаются провода от панели (или другого оборудования, питающего устройство).Нагрузка — это место, где подключаются любые устройства, которые должны быть защищены устройством GFCI.

Большинство «новых» устройств GFCI не будут сбрасываться, если они не подключены, вероятно.

Устройства

GFCI используют трансформатор тока (CT) для обнаружения любых разностей токов между «горячим» и «нейтральным» проводниками. Клеммы LINE находятся на одной стороне ТТ, а клеммы LOAD (и розетки на устройстве) — на другой.

Создан 29 сен.

Тестер101 Тестер101

1,955 33 золотых знака1112 серебряных знаков569569 бронзовых знаков

1

Если у вас только два провода: белый и черный, белый подключается к серебряной клемме LINE, а черный подключается к латунной клемме LINE, клеммы НАГРУЗКИ необходимы только для защиты других выходов, расположенных ниже по потоку.Если у вас зеленый или оголенный провод, его необходимо подключить к зеленому винту и коробке, если она металлическая.

Создан 30 сен.

user24125user24125

22711 серебряных знаков55 бронзовых знаков

Если на устанавливаемом устройстве есть и латунные, и серебристые винты, вам понадобятся оба горячих (обычно черный, красный и синий, в зависимости от того, подключаете ли вы схему на 120 или 240 вольт, черный чаще всего используется для 120 В, а красный — чаще всего для второй горячей ноги 240в) и нулевого провода (чаще всего белого). Ток проходит по горячим ногам и возвращается по белой ноге. Зеленый или (чаще всего) оголенный провод является вашей землей и посылает ток на землю через серию соединений, которые заканчиваются стержнем, который вбивается глубоко в землю вашим измерителем или местом, где электричество поступает в дом или офис. Его также можно заземлить на оцинкованные трубы для холодной воды или металлические электрические коробки, прикрепленные к каркасу здания.
«Горячий» провод (-а) подключается к латунному винту, нейтраль — к серебряному, а оголенный или зеленый провод — к зеленому винту заземления.Питание поступает в GFCI с боковой панели (не путайте здесь, под словом «сторона» они подразумевают либо верхний, либо нижний набор винтов, поскольку прерванная цепь расположена посередине, где находятся кнопки тестирования и сброса. находится), помеченная как «линия», и ток выходит из GFCI со стороны, помеченной как «нагрузка».
Это в основном устанавливает переключатель (похожий на выключатель света, который размыкает цепь, если прибор или устройство имеет короткое замыкание или перегрузку, что приведет к обратному срабатыванию обратной связи по вашей проводке в сторону панели.Вместо того, чтобы повредить вашу панель или вызвать электрический пожар, обратное электричество просто отключает выключатель в GFCI, размыкая цепь и предотвращая дальнейшее распространение энергии. Таким образом, вам нужно только отремонтировать / заменить устройство, вызвавшее короткое замыкание, и, возможно, розетку, которая подавала питание на короткозамкнутое устройство.

Создан 24 мая 2018 в 18:09.

1

Линия — это источник, а нагрузка — это то, что питается от рассматриваемой розетки. Самый простой способ проверить это — оголить и растянуть все провода. Как только они все распределятся (убедитесь, что ничего не касается, это важно), включите прерыватель и поместите один вывод мультиметра на черный провод (горячий), а другой — на белый провод (нейтраль). Если вы вообще получите какое-либо значение, вы будете знать, что у вас правильный горячий. Он должен быть около 120 для нейтрали вашей линии и около 20 для нейтрали нагрузки. Разделите их и подключите соответственно.

Создан 28 ноя.

Я думаю, линия означает сторону, ОТ которой идет питание, в отличие от НАГРУЗКИ, являющейся клеммой на стороне приема энергии.У вас есть линия электропередачи, выходящая из примыкания к стенам. У вас есть терминал нагрузки на любом подключенном устройстве. В основном означает противоположные концы одной цепи. Is th

Создан 24 июл.

1

Обмен стеклами товаров для дома лучше всего работает с включенным JavaScript

Ваша конфиденциальность

Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в ​​отношении файлов cookie.

Принимать все файлы cookie

Настроить параметры

electric — Как я могу рассчитать ожидаемую пиковую нагрузку по току?

Первое задание !!!

Первой задачей автоматических выключателей и предохранителей является защита проводов и оборудования, находящегося ниже.

Чтобы увеличить предохранитель / прерыватель, вы должны проверить всю проводку и части оборудования, чтобы убедиться, что они указаны / рассчитаны для этого использования. Например, возьмем американскую панель с выключателем на 100 А, питающим субпанель, шины которой рассчитаны на 125 А, питаемую проволокой размером 1/0 AWG. Вам нужен выключатель на 125 А. Это подтверждается, потому что провод и субпанель могут справиться с этим, как и провод. Однако вы не можете сделать выключатель на 150 А, потому что субпанель не может с ним справиться.

Калибровка основной, когда важна минимальная калибровка

Насколько я понимаю, в Японии с вас взимается фиксированная ежемесячная плата в зависимости от размера вашего основного предохранителя / прерывателя.У вас есть стимул указывать минимально возможное. (честно говоря, любой, кто оценивает размер автономной солнечной системы, сталкивается с той же дилеммой.)

Для начала вам необходимо определить, является ли ваша сеть 1-полюсной (100 В) или 2-полюсной (200 В).

В случае однополюсной службы это просто; вы просто выполняете приведенные ниже расчеты в целом. Однако для двухполюсной службы все сложнее. Вы должны определить, к какому полюсу подключена цепь, и выполнить приведенные ниже вычисления независимо для каждого полюса.Нагрузки 200 В рассчитываются одновременно по обоим полюсам.

Итак, на полюс:

Вам необходимо выяснить, какие цепи находятся на этом полюсе (что довольно просто для однополюсной службы), а затем определить, какие устройства находятся в этой цепи. Затем вы составляете список всех устройств в цепи и вычисляете практическую допустимую нагрузку каждого из них.

А вот и сложная часть: сгруппируйте все цепи в полюс, в котором они находятся. Теперь вычеркните приборы, которые вы не ожидаете использовать * одновременно **, за исключением того, что (сложная часть) сделайте это по всему полюсу, а не за контур.Допустим, у вас есть случай, когда в контуре 3 установлена ​​стиральная машина на 13 А. Вы никогда не используете его одновременно с лампой для обогрева ванной комнаты на 10 А в цепи 5. Таким образом, вы вычеркиваете меньшую нагрузку и учитываете только нагрузку 13 А — даже если они не в одной цепи, они находятся в одной и той же цепи. столб.

Вы получаете ампер либо на паспортной табличке прибора, либо на его «ваттах» или «ВА», деленных на напряжение — обычно ваше напряжение составляет 100 В. Однако иногда рейтинги устройств не отражают фактическую мощность — возьмем настольный ПК.Он может иметь блок питания на 850 Вт с паспортной табличкой на 12 ампер. Однако при фактическом использовании он может потреблять только 3 ампера. Вы можете измерить это с помощью такого устройства, как «Kill-a-Watt», как показано в другом ответе.

Я на самом деле рекомендую перейти к маркировке цепей, чтобы вы могли отметить, на какой прерыватель / розетку включена нагрузка. Скажем, например, поскольку здесь так важны полюса, цепи на полюсе 1 могут быть названы Тор Халк, Железный человек, Соколиный глаз и т. Д. А полюс 2 будет называться Ариэль Белль, Золушка, Жасмин Мулан и т. Д.Затем выключите каждую цепь и посмотрите, какие розетки вышли из строя, и пометьте все эти «Тор» и т. Д.

Балансировка двухполюсной службы

Теперь вы можете обнаружить, что нагрузка на полюс однобока — вы можете обнаружить, что максимальное одновременное использование на полюсе 1 составляет 45 ампер, а на полюсе 2 — всего 13 ампер. Или вы можете обнаружить, что стиральная машина и тепловая лампа для ванной находятся на противоположных полюсах, поэтому вы не можете отключить тепловую лампу. Это улучшило бы баланс, если бы вы могли перемещать предметы с одного полюса на другой.

В этом случае вы (или ваш подрядчик) можете это сделать. Однако вы можете делать это только для каждой цепи, а не для каждого устройства. Следовательно, нужно заботиться о номерах / названиях цепей.

Калибры проводов

AWG Номинальные значения тока

AWG — American Wire Gauge — используется в качестве стандартного метода определения диаметра провода, измерения диаметра проводника (неизолированного провода) с удаленной изоляцией. AWG иногда также называют калибром проводов Брауна и Шарпа (B&S).

Приведенная ниже таблица AWG предназначена для одинарного сплошного круглого проводника. Из-за небольших зазоров между жилами в многожильном проводе многожильный провод с той же допустимой нагрузкой по току и электрическим сопротивлением, что и сплошной провод, всегда имеет немного больший общий диаметр.

Чем больше цифра, тем тоньше проволока. Типичная бытовая электропроводка — это AWG номер 12 или 14. Телефонный провод имеет типичный AWG 22, 24 или 26.

В таблице ниже указаны номинальные значения тока одно- и многожильных кабелей с ПВХ изоляцией.Имейте в виду, что текущая нагрузка зависит от метода установки — корпуса — и от того, насколько хорошо сопротивление отводится от кабеля. Важны рабочая температура жилы, температура окружающей среды и тип изоляции жилы. Перед детальным проектированием всегда проверяйте данные производителя.

Для полной таблицы с одноядерными и многоядерными текущими рейтингами — поверните экран!

1) Номинальные значения тока до 1000 В, одножильные и многожильные кабели с ПВХ изоляцией, температура окружающей среды до 30 o C

Загрузите и распечатайте диаграмму AWG

Значения сопротивления основаны на электрических удельное сопротивление для меди 1.724 x 10 -8 Ом м (0,0174 мкОм м) и удельное электрическое сопротивление для алюминия 2,65 x 10 -8 Ом м (0,0265 мкОм м).

Чем выше номер калибра, тем меньше диаметр и тоньше проволока.

Из-за меньшего электрического сопротивления более толстый провод пропускает больший ток с меньшим падением напряжения, чем более тонкий провод. Для больших расстояний может потребоваться увеличить диаметр провода — уменьшить калибр — чтобы ограничить падение напряжения.

Поправочные коэффициенты при температуре окружающей среды выше 30

o C

  • температура окружающей среды 31-40 o C: поправочный коэффициент = 0.82
  • температура окружающей среды 41-45 o C: поправочный коэффициент = 0,71
  • температура окружающей среды 45-50 o C: поправочный коэффициент = 0,58

Размер проводов для всех условий нагрузки

Время чтения: 18 минут.

Одна из наших основных обязанностей в торговле электроэнергией — это выбор электрических проводников, а одна из основных обязанностей электрических инспекторов — правильно оценивать эти решения.Признавая важность этого вопроса, целевая группа, назначенная для рассмотрения статьи 220 NEC 2005 г., решила рекомендовать добавить новый Пример 3A в Приложение D, охватывающий эту тему. Он фокусируется не на расчетах нагрузки, а на выборе проводника. В отличие от большинства примеров, нагрузки предусмотрены, 1 контекст является промышленным, а распределение составляет 480 Y / 277 В. Предложение было одобрено Техническим комитетом по корреляции NEC и принято CMP-2 с учетом комментариев общественности, как и все предложения.В этой статье используется установка, проиллюстрированная в предложенном примере (см. Рис. 1 для наглядности), чтобы представить концепции, которые необходимо освоить. В этом примере предполагается, что заделки проводов 75 ° C, а затем рассчитывается защита от перегрузки по току и размеры проводов, необходимые для двух 3-фазных 4-проводных фидеров, работающих в общем кабельном канале через проход для доступа к инженерным сетям, который включает технологический пар, что приводит к температуре окружающей среды 35 ° C.

Фото 1. Автоматический выключатель на 20 А, отмеченный как допустимый для оконечной нагрузки 75 ° C

Средние и концы проводов требуют отдельных расчетов

Ключ к правильному выбору проводника — помнить, что конец проводника отличается от его середины.Для расчета размеров проводников применяются особые правила в зависимости от предполагаемого функционирования концевых заделок. Совершенно другие правила направлены на то, чтобы проводники по всей своей длине не перегревались при преобладающих нагрузках и условиях использования. Эти два набора правил не имеют ничего общего друг с другом — они основаны на совершенно разных термодинамических соображениях. В некоторых расчетах чисто случайно используются одинаковые множители. Иногда требования к заделке обеспечивают самый большой проводник, а иногда — требования по предотвращению перегрева проводника.Вы не можете сказать точно, пока не завершите все расчеты, а затем не проведете сравнение. Пока вы не привыкнете делать эти вычисления, делайте их на отдельных листах бумаги.

Ток всегда связан с теплом. Каждый проводник имеет некоторое сопротивление, и по мере увеличения тока вы увеличиваете количество тепла, при прочих равных условиях. Фактически, количество тепла быстро увеличивается пропорционально квадрату силы тока. Таблицы допустимой нагрузки в NEC по-другому отражают нагрев. Как выдержки из Таблицы 310.16, таблицы показывают, какой ток вы можете безопасно (то есть без перегрева изоляции) и непрерывно проводить через проводник при преобладающих условиях — что, по сути, является определением допустимой токовой нагрузки в Статье 100: «Ток в амперах, который проводник может непрерывно работать в условиях эксплуатации, не превышая его температурный допуск ».

Таблица 1. Таблица 310.16

Таблицы допустимой нагрузки показывают, как проводники реагируют на тепло. Таблицы пропускной способности (см. Таблицу 310.16, например) делают гораздо больше, чем описано в предыдущем абзаце. Они косвенно показывают значение тока, при котором проводник будет работать при определенном температурном пределе или ниже него. Помните, что нагрев проводника происходит из-за протекания тока через металл, имеющий заданную геометрию (как правило, длинный гибкий цилиндр заданного диаметра и металлического содержания). Другими словами, чтобы понять, насколько нагревается проводник, вы можете игнорировать различные стили изоляции.В качестве инструмента обучения давайте превратим это в «правило», а затем посмотрим, как NEC использует его: проводник, независимо от его типа изоляции, проходит при температуре ниже или ниже предельной температуры, указанной в столбце допустимой токовой нагрузки, когда после регулировки В условиях использования он пропускает ток, равный или меньший, чем предел допустимой нагрузки, указанный в этом столбце.

Например, проводник THHN 10 AWG при 90 ° C имеет допустимую нагрузку 40 ампер. Наше «правило» гласит, что когда медные проводники 10 AWG выдерживают 40 ампер при нормальных условиях использования, они достигают установившейся температуры в наихудшем случае 90 ° C чуть ниже изоляции.Между тем, определение допустимой нагрузки говорит нам, что независимо от того, как долго сохраняется эта температура, она не повредит проводник. Однако это не относится к устройству. Если провод на коммутационном устройстве слишком долго становится слишком горячим, это может привести к потере состояния металлических деталей внутри, вызвать нестабильность неметаллических деталей и привести к ненадежной работе устройств максимального тока из-за смещения калибровки.

Ограничения прерывания для защиты устройств

Из-за риска перегрева устройств производители устанавливают пределы температуры для проводов, которые вы надеваете на их клеммы.Учтите, что соединение металл-металл, которое является надежным в электрическом смысле, вероятно, проводит тепло так же эффективно, как и ток. Если вы подключите провод 90 ° C к автоматическому выключателю, и проводник достигнет 90 ° C (почти точка кипения воды), внутренняя часть этого выключателя не будет намного ниже этой температуры. Ожидать, что этот выключатель будет надежно работать даже с привинченным к нему источником тепла 75 ° C, означает многого.

Рис. 1. Схема, предложенная для нового примера 3A для NEC

2005 года.

Испытательные лаборатории принимают во внимание уязвимость устройств к перегреву, и в течение многих-многих лет существуют ограничения, запрещающие использование проводов, которые могут вызвать перегрев устройства.Эти ограничения теперь появляются в NEC 110.14 (C). Меньшие по размеру устройства (как правило, 100 А и ниже или с условиями подключения для проводов сечением 1 AWG или меньше) исторически не предполагалось, что они будут работать с проводниками с номиналом выше 60 ° C, такими как тип TW. Для оборудования с более высоким номиналом предполагается наличие проводов 75 ° C, но, как правило, не выше для оборудования на 600 В и ниже. Это справедливо и сегодня для более крупного оборудования. (Оборудование среднего напряжения, более 600 вольт, имеет большие внутренние зазоры, и обычная поправка составляет 90 ° C на 110.40, но это оборудование выходит за рамки данной статьи.) Сегодня меньшее оборудование все чаще имеет рейтинг «60/75 ° C», что означает, что оно будет работать должным образом, даже если сечение проводников основано на столбце 75 ° C ( Таблица 310.16).

Фотография 1 показывает маркировку «60/75 ° C» на автоматическом выключателе на 20 ампер, что означает, что он может использоваться с проводниками 75 ° C или с проводниками 90 ° C, используемыми в столбце допустимой токовой нагрузки 75 ° C. Как на щитке, так и на устройстве на другом конце проводника должны быть сделаны одинаковые поправки на допустимую температуру 75 ° C.В противном случае применяется столбец 60 ° C. Однако всегда помните, что у проводников два конца. Для успешного использования проводов меньшего диаметра (с большей допустимой нагрузкой) на другом конце устройства должна быть нанесена аналогичная маркировка. Обратитесь к рисунку 2 для примера работы этого принципа.

Соединения — это заделки. Не все заделки происходят на электрических устройствах или утилизационном оборудовании. Некоторые заделки происходят в середине участка, когда один проводник соединяется с другим. Та же проблема возникает, когда мы выполняем полевое соединение с шиной, которая проходит между оборудованием.Шины, обычно прямоугольные в поперечном сечении, часто используются вместо обычных проводов в приложениях, требующих очень больших токов. Когда вы подключаетесь к одной из этих сборных шин (в отличие от сборной шины внутри панели) или от одного проводника к другому, вам нужно беспокоиться только о номинальной температуре компрессионных соединителей или других задействованных средств сращивания. Обратите внимание на отметку, например, «AL9CU» на выступе. Это означает, что вы можете использовать его как с алюминиевыми, так и с медными проводниками при температуре до 90 ° C, но только там, где наконечник «установлен отдельно» (текст NEC).

Температурная маркировка наконечников обычно означает меньше, чем кажется. Многие контакторы, щитовые панели и т. Д. Имеют клеммные наконечники с маркировкой, указывающей на допустимую температуру 90 ° C. Игнорируйте эту маркировку, потому что выступы не устанавливаются отдельно. Применяйте обычные правила завершения работы для этого типа оборудования. Здесь происходит то, что производитель оборудования покупает наконечники у другого производителя, который не хочет запускать две производственные линии для одного и того же продукта. Проушина, которую вы устанавливаете на сборной шине и безопасно используете при температуре 90 ° C, также работает, если она поставляется изготовителем вашего контактора.Но на контакторе вы не хотите, чтобы наконечник работал так сильно. Проушина не будет повреждена при 90 ° C, но оборудование, к которому она прикреплена, не будет работать должным образом.

Определение параметров защиты цепи для постоянно загружаемых устройств

NEC определяет непрерывную нагрузку как нагрузку, продолжающуюся три часа или дольше. Большинство бытовых нагрузок не являются непрерывными, но многие коммерческие и промышленные нагрузки являются непрерывными. Рассмотрим, например, ряды люминесцентных ламп в магазине. Не многие магазины всегда открыты менее трех часов за раз.Хотя постоянная нагрузка не влияет на допустимую нагрузку на проводник (определяемую, как мы видели, как постоянную допустимую нагрузку по току), она оказывает большое влияние на электрические устройства. Подобно тому, как на устройство будет воздействовать механически источник тепла, прикрепленный к нему болтами, на него также действует механическое воздействие, когда через него постоянно проходит ток, близкий к его номинальной нагрузке. Чтобы не уменьшить тепловую нагрузку на устройство и не повлиять на его рабочие характеристики, NEC ограничивает подключенную нагрузку до не более 80 процентов от номинальной мощности цепи.Обратное значение 80 процентов равно 125 процентам, и вы увидите, что ограничение указано в обоих направлениях. Ограничение продолжительной части нагрузки до 80 процентов от номинальной мощности устройства означает то же самое, что и указание на то, что устройство должно быть рассчитано на 125 процентов от продолжительной части нагрузки. Если у вас есть как непрерывная, так и непостоянная нагрузка на одну и ту же цепь, возьмите непрерывную часть на уровне 125 процентов, а затем добавьте прерывистую часть. Результат не должен превышать номинальных значений схемы.

Предположим, например, что нагрузка состоит из 51.6 ампер периодической нагрузки и 67,8 ампер непрерывной нагрузки (всего 119 ампер), как было предложено для примера 3A (рисунок 1) и показано только с основными элементами на рисунке 3. Мы будем использовать формат рисунка 3 на протяжении всей остальной части этого документа. статью, чтобы избежать путаницы, поскольку мы постепенно вводим усложняющие факторы, влияющие на эти расчеты. Рисунок 1 объединяет все аспекты процедуры расчета, и мы вернемся к нему в конце. На данный момент просто рассчитайте минимальную пропускную способность, необходимую для нашего подключенного оборудования (не проводников), следующим образом:

Шаг 1:51. 6 А x 1,00 = 51,6 А

Шаг 2: 67,8 A x 1,25 = 84,8 A

Шаг 3: Минимум = 136,4 A

Раздел 220.2 (B) позволяет отбрасывать незначительные доли ампера2. Устройство, такое как автоматический выключатель, которое будет выдерживать этот профиль нагрузки, должно иметь номинал не менее 136 ампер, даже если на самом деле через устройство проходит только 119 ампер. В случае устройств защиты от сверхтоков следующий более высокий стандартный размер будет составлять 150 ампер. В общем, для устройств защиты от сверхтоков, не превышающих 800 ампер, NEC позволяет округлить в большую сторону до следующего более высокого стандартного размера устройства максимальной токовой защиты.

Рис. 2. При оценке температуры заделки всегда учитывайте оба конца проводника.

Две распространенные ошибки. Зайдя так далеко, здесь легко сделать две ошибки. Во-первых, хотя вы можете округлить номинал устройства максимального тока, вы не можете округлить с точки зрения нагрузки проводника, даже одного ампера. Провод 1 AWG в колонне 75 ° C может выдерживать ток 130 ампер. Если ваша фактическая нагрузка составляет 131 ампер, вам необходимо использовать провод большего размера.Во-вторых, когда важны продолжительные нагрузки, необходимо создать дополнительный запас по размеру проводов, чтобы обеспечить правильную работу подключенных устройств. Этот последний пункт приводит к постоянной путанице, потому что может показаться, что он противоречит тому, что мы сказали о допустимой нагрузке проводника, которая имеет тенденцию быть фактором, определяющим минимальный размер проводника.

Рис. 3. Устройства защиты от сверхтоков должны быть рассчитаны на расчетную нагрузку плюс 25 процентов любых частей нагрузки, которые являются непрерывными.

Мы работаем с проводниками и беспокоимся о перегреве проводов. Производители устройств в этом смысле не беспокоятся о проводниках; они беспокоятся о том, что их устройства могут перегреться и не работать должным образом. Непрерывные нагрузки создают серьезные проблемы с точки зрения отвода тепла изнутри механического оборудования. Помните, что когда вы прикрепляете провод к устройству, они становятся одним в механическом, а также в электрическом смысле. Производители устройств полагаются на эти проводники как на теплоотвод, особенно при постоянной нагрузке.NEC позволяет это сделать, требуя увеличения размеров проводников, несущих постоянные нагрузки, в соответствии с той же формулой, которая применяется к устройству, а именно дополнительных 25 процентов непрерывной части нагрузки.

Снижение номинальных характеристик может существенно повлиять на нагрев проводника. Например, проводник THHN 10 AWG может выдерживать 40 ампер в течение месяца без ущерба для себя. Но в этих условиях проводник будет представлять собой непрерывный источник тепла 90 ° C. Теперь посмотрите, что происходит, когда мы (1) определяем размер проводника для заделки на 125 процентов от непрерывной части нагрузки и (2) используем столбец 75 ° C для анализа.Этот расчет предполагает, что оконечная нагрузка рассчитана на 75 ° C вместо значения по умолчанию 60 ° C:

Шаг 1: 1,25 x 40 A = 50 A

Шаг 2: Таблица 310.16 при 75 ° C = 8 AWG

Мы переходим от проводника 10 AWG к проводу 8 AWG (6 AWG, если оборудование не имеет допусков для заделки 75 ° C). Это всего лишь один стандартный размер проводника, но посмотрите на него с точки зрения производителя устройства. 10 AWG, непрерывно несущий 40 А, представляет собой непрерывную тепловую нагрузку до 90 ° C.А как насчет 8 AWG? Используйте таблицу допустимой нагрузки в обратном порядке, в соответствии с нашим «правилом». Сорок ампер — это допустимая токовая нагрузка проводника 8 AWG, 60 ° C. Следовательно, любой провод 8 AWG (THHN или другой) не будет превышать 60 ° C, если его нагрузка не превышает 40 ампер. При увеличении всего на один размер проводника температура оконечной нагрузки упала с 90 ° C до 60 ° C. NEC позволяет производителям рассчитывать на этот запас.

Напомним, что если у вас постоянная нагрузка на 40 ампер, автоматический выключатель должен иметь номинал не менее 125 процентов от этого значения, или 50 ампер.Кроме того, провод должен иметь такой же размер, чтобы выдерживать такое же значение тока, исходя из столбца допустимой токовой нагрузки 75 ° C (или 60 ° C, если не рассчитано на 75 ° C). Изготовитель и испытательная лаборатория рассчитывают, что относительно холодный проводник будет работать как теплоотвод для тепла, выделяемого внутри устройства в этих условиях непрерывной работы.

Рис. 4. Эти воображаемые тяговые коробки на каждом конце участка показывают, как отделить расчеты кабельных каналов / нагрева кабеля от расчетов заделки.

В примере с фидером (рис. 1), включая 125 процентов на непрерывную часть нагрузки, мы получаем проводник на 136 А, а следующий больший провод в столбце 75 ° C — 1/0 AWG.Используйте здесь столбец 75 ° C, потому что устройство на 150 А превышает пороговое значение в 100 А (ниже которого предполагается, что номинальный ток составляет 60 ° C). Помните, что через эти устройства на самом деле протекает только 119 ампер (67,8 + 51,6 ампер) тока. Дополнительные 17 ампер (разница между 119 и 136 ампер) — это фантомная нагрузка. Вы включаете его только для того, чтобы ваш окончательный выбор проводника был достаточно холодным, чтобы позволить ему работать в соответствии с допущениями, сделанными в различных стандартах на продукты.

Устройства рассчитаны на 100-процентную непрерывную нагрузку.Существуют устройства, которые производятся и перечисляются так, чтобы постоянно соответствовать 100% своего рейтинга, и NEC признает их использование в порядке исключения. Обычно в этих приложениях используются очень большие размеры корпуса выключателя в диапазоне 600 А (хотя расцепители могут быть меньше). Эти продукты сопровождаются дополнительными ограничениями, такими как количество, которое может использоваться в одном корпусе, и минимальные требования к номинальной температуре для проводников, подключенных к ним. Сначала узнайте, как установить обычные устройства, а затем примените эти устройства со 100-процентным рейтингом, если вы столкнетесь с ними, обязательно применив все ограничения на установку, указанные в инструкциях, прилагаемых к этому оборудованию.Предупреждение о проводниках, имеющих два конца, применяется здесь с особой остротой; имейте в виду, что одно из этих устройств на одном конце цепи ничего не говорит о пригодности оборудования на другом конце.

Середина проводника — предотвращение перегрева проводников

Рис. 5. Пример, снова использующий устройство подачи с 51,6 А при непостоянной нагрузке и 67,8 А при постоянной нагрузке.

Ни одно из предыдущих обсуждений не имеет ничего общего с предотвращением перегрева проводника.Верно. Все, что мы сделали, — это убедиться, что устройство работает так, как предполагают производитель и испытательная лаборатория с точки зрения прекращения работы. Теперь нужно убедиться, что проводник не перегревается. Опять же, емкость по определению — это непрерывная способность. Характеристики нагрева устройства в конце пробега не имеют никакого отношения к тому, что происходит в середине дорожки качения или кабельной сборки.

Повторюсь, на этом этапе вы должны разделить свое мышление. Мы просто закрыли конец проводника; Теперь перейдем к середине проводника.Помните, как вас просили сделать это на отдельных листах бумаги? Заблокируйте первый и забудьте все, что вы только что рассчитали. Это не имеет абсолютно никакого отношения к тому, что будет дальше. Только после того, как вы выполнили следующую серию вычислений, вы можете получить первый лист бумаги. И только после этого вы должны вернуться и посмотреть, какой результат представляет наихудший случай и, следовательно, определяет ваш выбор дирижера.

Мнимые ящики для тяги? Если у вас возникли проблемы с этим различием, а у многих возникают проблемы, примените воображаемую коробку для вытягивания на каждом конце пробега (рисунок 4). В этой части статьи рассматривается выбор проводов для прокладки между двумя тяговыми коробками, и не более того. Первая часть статьи касалась выбора проводов подходящего размера для подключения к устройствам, и не более того. Последним шагом в этом процессе является сравнение двух результатов и выбор проводников, удовлетворяющих обоим наборам требований. В этот момент, и только в этот момент, вы можете выключить свой мысленный образ этих ящиков, потому что они больше не служат никакой цели.

Проверьте определение допустимой нагрузки.Токовая нагрузка проводника — это его допустимая токовая нагрузка в условиях эксплуатации. Для целей NEC на допустимую нагрузку влияют два полевых условия: взаимный нагрев и температура окружающей среды. Любой из них или оба могут применяться к любой электрической установке. Оба эти фактора уменьшают допустимую нагрузку, указанную в таблицах.

Рис. 6. Повышенные температуры окружающей среды также вызывают снижение допустимой токовой нагрузки проводов

Взаимное отопление. Под нагрузкой проводник рассеивает тепло через поверхность в окружающий воздух; если что-то замедляет или препятствует скорости рассеивания тепла, температура проводника увеличивается, возможно, до точки повреждения.Чем больше токопроводящих проводов находится в одной и той же кабельной трассе или кабельной сборке, тем ниже эффективность, с которой они могут рассеивать свое тепло. Чтобы покрыть этот эффект взаимного нагрева, NEC налагает штрафы за снижение номинальных значений токовой нагрузки стола. Штрафы увеличиваются с увеличением количества токоведущих проводов в кабельной трассе или кабельной сборке. Таблица 310.15 (B) (2) (a) NEC ограничивает допустимую нагрузку, указывая коэффициенты снижения номинальных значений, применимые к токовым нагрузкам стола. Например, если количество проводников превышает три, но меньше семи, допустимая нагрузка составляет только 80 процентов от табличного значения; если число больше шести, но меньше одиннадцати — 70 процентов; больше десяти, но меньше двадцати одного, 50 процентов и так далее. Однако, если длина дорожки не превышает 24 дюйма (классифицируется как ниппель), NEC предполагает, что тепло будет уходить с концов дорожки качения, а допустимая токовая нагрузка закрытых проводников не должна снижаться [см. 310.15 (B) (2) (а) Исключение № 3].

Считайте только токоведущие проводники для расчетов снижения номинальных характеристик. Заземляющие провода оборудования никогда не учитываются при корректировке допустимой нагрузки, а предназначены для заполнения. Следует учитывать только один проводник в паре трехходовых переключателей. Нейтральный проводник, по которому проходит только несимметричный ток цепи (например, нейтральный провод трехпроводной однофазной цепи или четырехпроводной трехфазной цепи), в некоторых случаях не учитывается для снижения номинальных характеристик.Однако заземленные проводники не всегда являются нейтральными. Заземленный («белый») провод в двухпроводной цепи пропускает тот же ток, что и провод под напряжением, и поэтому не является нейтралью. Если вы устанавливаете две такие двухпроводные цепи в кабелепровод, их следует рассматривать как четыре проводника.

Рис. 7. Два питателя на рис. 5, на которые может повлиять добавление повышенной температуры окружающей среды, показанной на рис. 6

Как (и когда) считать нейтралов. Хотя нейтральные проводники учитываются для снижения номинальных характеристик только в том случае, если они действительно являются токонесущими, в коммерческих распределительных системах, получаемых из трехфазных, четырехпроводных трансформаторов, соединенных звездой, все чаще обнаруживаются очень сильно нагруженные нейтрали.Если цепь питает в основном электроразрядное освещение или другие нелинейные нагрузки, вы всегда должны учитывать нейтраль. Нейтральные элементы в предлагаемом Примере 3A подсчитываются по той же причине. Помните также, что каждый раз, когда вы прокладываете только два из трехфазных проводов трехфазной четырехпроводной системы вместе с нейтралью системы, эта нейтраль всегда несет примерно такую ​​же нагрузку, что и незаземленные проводники, и ее необходимо учитывать. Такое расположение очень распространено в больших многоквартирных домах, где фидер в каждую квартиру состоит из двухфазных проводов вместе с нейтралью, но в целом обслуживание является трехфазным, четырехпроводным.

Однако нейтраль истинной однофазной трехпроводной системы (например, 120/240 вольт) не нужно учитывать, потому что гармонические токи полностью компенсируются в этих системах. Подавляющее большинство односемейных и небольших многоквартирных домов и большинство ферм имеют такое распределение, что значительно упрощает ваши расчеты по выбору кондуктора.

Снижение допустимой нагрузки проводника. Теперь, когда вы знаете, как подсчитать количество проводников с током в кабелепроводе, пора научиться применять правила NEC к результату.Использование NEC напрямую означает переход от таблицы допустимой нагрузки к коэффициенту снижения номинальных характеристик (на который вы умножаете) и сравнение результата с нагрузкой. Это замечательно для инспектора, который проверяет вашу работу (в резюме в конце статьи используется этот процесс), но это не поможет вам выбрать правильного дирижера в первую очередь. Вы хотите пойти другим путем: зная нагрузку, вы хотите выбрать правильный проводник. На рисунке 5 показан пример, где снова используется питатель с непостоянной нагрузкой 51,6 ампер и 67.8 ампер непрерывной нагрузки. Предположим, у вас есть два из этих фидеров, обеспечивающих одинаковые профили нагрузки и идущих по одному и тому же кабелепроводу. Это будет восемь токоведущих проводов в кабельной дорожке. В этой части анализа игнорируйте проблемы непрерывной загрузки и завершения. Помните, что для этого расчета вам следует использовать свежий лист бумаги.

Начните с 119 ампер фактической нагрузки (51,6 ампер + 67,8 ампер, округленные до трех значащих цифр, как указано в предлагаемом новом примере 3A) и разделите (вы идете в другом направлении, поэтому вы используете обратное умножение) на 0 .7 [см. Таблицу 310.15 (B) (2) (a)], чтобы получить в этом случае 170 ампер. 2 Другими словами, любой проводник с допустимой токовой нагрузкой, равной или превышающей 170 ампер, математически гарантированно будет нести ток 119- надежно усилить фактическую нагрузку. Провод 1/0 AWG THHN с допустимой нагрузкой 170 ампер будет безопасно переносить эту нагрузку в условиях использования, и может показаться, что он работает. Будет ли он представлять ваш окончательный выбор, зависит от того, что следует из последующего анализа под заголовком «Выбор дирижера».

Рисунок 8.Существует ограниченное исключение из принципа слабого звена в цепи, проиллюстрированного на этом чертеже.

Проблемы с температурой окружающей среды. Высокая температура окружающей среды, как и в случае взаимного нагрева, препятствует отводу тепла проводника. Чтобы предотвратить перегрев, NEC предоставляет коэффициенты снижения номинальных значений температуры окружающей среды в нижней части таблиц допустимой нагрузки. В нашем примере проводники цепи проходят через температуру окружающей среды 35 ° C. Их допустимая нагрузка снижается (для проводников с температурой 90 ° C) до 96 процентов от базового числа в таблице допустимой нагрузки, как показано на рисунке 6.Здесь мы снова начинаем с 119 ампер и делим на 0,96, чтобы получить 124 ампер. Любой провод с температурой 90 ° C с допустимой токовой нагрузкой, равной или превышающей 124 А, будет безопасно переносить эту нагрузку.

Что произойдет, если у вас одновременно высокая температура окружающей среды и взаимный нагрев, как показано на рисунке 7? Разделите дважды, по одному разу на каждый множитель. В данном случае:

119 А ÷ 0,7 ÷ 0,96 = 177 А

Провод 2/0 AWG THHN (токовая нагрузка = 195 ампер) выдержит эту нагрузку, не повредившись. Опять же, это будет верно независимо от того, была ли нагрузка непрерывной, и было ли разрешено использовать устройства с выводами 90 ° C.Не обманывайте; расчет прекращения по-прежнему должен быть заперт в другом ящике.

При пониженной допустимой нагрузке применяется только к небольшой части пробега. Иногда вы будете сталкиваться с установками, в которых большая часть схемы соответствует таблице 310.16, но небольшая часть требует очень значительного снижения характеристик. Например, как показано на рисунке 8, длина вашего контура может составлять 208 футов, из которых 200 футов в нормальных условиях и 7 футов проходят через угол котельной с очень высокой температурой окружающей среды.NEC обычно соблюдает принцип «слабое звено в цепи» и требует, чтобы максимально допустимая токовая нагрузка была наименьшей где-либо в течение цикла. Однако для очень коротких интервалов, когда остальная часть цепи может работать как теплоотвод, NEC позволяет использовать более высокую допустимую нагрузку.

Рис. 9. Никогда не упускайте из виду тот факт, что в конце рабочего дня устройство защиты от сверхтоков должно защищать свои проводники.

В частности, в любое время, когда допустимая нагрузка изменяется во время цикла, определяют все точки перехода.На одной стороне каждой точки допустимая нагрузка будет выше, чем на другой стороне. Теперь измерьте длину провода с более высокой допустимой нагрузкой (в данном примере участки, не находящиеся в котельной) и длину провода с меньшей допустимой нагрузкой (в данном примере — в котельной). Сравните две длины. NEC 310.15 (A) (2) Исключение позволяет использовать более высокое значение допустимой нагрузки за пределами точки перехода для длины, равной 10 футам или 10 процентам длины цепи, имеющей более высокую допустимую нагрузку, в зависимости от того, что меньше.

В этом случае (200-футовый участок за пределами 8 футов в котельной) 10 процентов длины цепи, имеющей более высокую допустимую нагрузку, будут составлять 20 футов, но вы не можете применить правило к чему-либо более 10 футов. меньше или равно 10 футам (и меньше 10-процентного предела в 20 футов) применяется исключение, и вы можете игнорировать температуру окружающей среды в котельной при определении допустимой допустимой токовой нагрузки проводников, проходящих через нее. В словах исключения, «более высокая допустимая нагрузка» (которая применяется к трассе за пределами котельной) может использоваться за переходной точкой (стеной котельной) на «расстояние, равное 10 футам или 10 процентам длины. рассчитывается при более высокой допустимой нагрузке, в зависимости от того, что меньше.”

Выбор проводника

Теперь вы можете разблокировать ящик и вытащить расчет прекращения. Положите оба листа бумаги перед собой и спроектируйте наихудший случай, установив самый большой проводник, полученный в результате этих двух независимых расчетов. Расчет оконечной нагрузки (рис. 3) потребовал проводов сечением под столбцом 75 ° C не менее 136 ампер, хотя фактическая нагрузка составляла всего 119 ампер. Вы можете использовать 1/0, THHN или THW. Выбор проводов 90 ° C на основе только нагрузки или даже нагрузки, работающей на одном фидере при температуре окружающей среды 35 ° C (рис. 6), приведет к получению проводов 2 AWG, и устройства не будут работать правильно.

Предположим, вы поместили два фидера (восемь проводников) в кабелепровод, как показано на рисунке 5. Расчет заделки по-прежнему составляет 1/0, но, как мы видели, расчет снижения номинальных характеристик дорожки качения также составляет 1/0 AWG. Теперь правила прекращения и правила дорожки качения совпадают. Однако, если тот же канал проходит через зону с высокой температурой окружающей среды, вам потребуется 2/0 THHN или XHHW. Это пример того, когда условия дорожки качения ограничивают, и вы соответственно выбираете размер. На этом этапе мы возвращаемся к основному вопросу, поставленному в предлагаемом примере 3A, как показано на рисунке 1, а именно к определению размеров фидера, а незаземленные фазные проводники оказываются сечением 2/0 AWG.

Проводник должен быть всегда защищен

Никогда не упускайте из виду тот факт, что устройство максимального тока всегда должно защищать провод. Для цепей на 800 ампер и меньше 240,4 (B) позволяет использовать устройство перегрузки по току следующего более высокого стандартного размера для защиты проводников. Выше этой точки 240,4 (C) требует, чтобы допустимая токовая нагрузка проводника была не меньше номинала устройства максимального тока. В качестве окончательной проверки убедитесь, что размер устройства максимального тока, выбранного для выдерживания длительных нагрузок, защищает проводники в соответствии с этими правилами; в противном случае вам потребуется соответственно увеличить размер проводника.Обратитесь к обсуждению прерывистых нагрузок (ниже), чтобы увидеть пример того, где, даже после выполнения как согласования, так и расчетов допустимой нагрузки, это соображение вынуждает вас изменить результат.

Непрерывные нагрузки. Обратитесь к рисунку 9, который предполагает, что никакая нагрузка не является постоянной на фидерах, ранее показанных на рисунке 5, и что большая часть нагрузки между фазой и нейтралью является линейной. Теперь только шестифазные проводники в этом кабельном канале квалифицируются как проводники с током, и предположим, что температура окружающей среды не превышает 30 ° C.

Калькулятор падения напряжения

Это калькулятор для оценки падения напряжения в электрической цепи на основе размера провода, расстояния и ожидаемого тока нагрузки. Обратите внимание, что этот калькулятор предполагает, что цепь работает в нормальных условиях — при комнатной температуре с нормальной частотой. Фактическое падение напряжения может варьироваться в зависимости от состояния провода, используемого кабелепровода, температуры, разъема, частоты и т. Д. Рекомендуется, чтобы падение напряжения было менее 5% при полной нагрузке.

Основной закон падения напряжения

В падение = ИК

где:
I: ток через объект, измеренный в амперах
R: сопротивление проводов, измеренное в Ом.

Типичные сечения проводов AWG

AWG Диаметр Витки провода Площадь Сопротивление меди Допустимая нагрузка на медный провод NEC с изоляцией 60/75/90 ° C (A) Приблизительно в метрических эквивалентах
дюйм мм на дюйм на см килограмм мм 2 Ом / км Ом / 1000 футов
0000 (4/0) 0.4600 11,684 2,17 0,856 212 107 0,1608 0,04901 195/230/260
000 (3/0) 0,4096 10,404 2,44 0,961 168 85,0 0,2028 0,06180 165/200/225
00 (2/0) 0.3648 9,266 2,74 1,08 133 67,4 0,2557 0,07793 145/175/195
0 (1/0) 0,3249 8,252 3,08 1,21 106 53,5 0,3224 0,09827 125/150/170
1 0.2893 7,348 3,46 1,36 83,7 42,4 0,4066 0,1239 110/130/150
2 0,2576 6.544 3,88 1,53 66,4 33,6 0,5127 0,1563 95/115/130
3 0.2294 5,827 4,36 1,72 52,6 26,7 0,6465 0,1970 85/100/110 196 / 0,4
4 0,2043 5,189 4,89 1,93 41,7 21,2 0,8152 0,2485 70/85/95
5 0.1819 4,621 5,50 2,16 33,1 16,8 1.028 0,3133 126 / 0,4
6 0,1620 4,115 6,17 2,43 26,3 13,3 1,296 0,3951 55/65/75
7 0.1443 3,665 6,93 2,73 20,8 10,5 1,634 0,4982 80 / 0,4
8 0,1285 3,264 7,78 3,06 16,5 8,37 2,061 0,6282 40/50/55
9 0.1144 2,906 8,74 3,44 13,1 6,63 2,599 0,7921 84 / 0,3
10 0,1019 2,588 9,81 3,86 10,4 5,26 3,277 0,9989 30/35/40
11 0.0907 2.305 11,0 4,34 8,23 4,17 4,132 1,260 56 / 0,3
12 0,0808 2,053 12,4 4,87 6,53 3,31 5,211 1,588 25/25/30 (20)
13 0.0720 1,828 13,9 5,47 5,18 2,62 6,571 2,003 50 / 0,25
14 0,0641 1,628 15,6 6,14 4,11 2,08 8,286 2,525 20/20/25 (15)
15 0.0571 1,450 17,5 6,90 3,26 1,65 10,45 3,184 30 / 0,25
16 0,0508 1,291 19,7 7,75 2,58 1,31 13,17 4,016 — / — / 18 (10)
17 0.0453 1,150 22,1 8,70 2,05 1,04 16,61 5,064 32 / 0,2
18 0,0403 1.024 24,8 9,77 1,62 0,823 20,95 6.385 — / — / 14 (7) 24/0.2
19 0,0359 0,912 27,9 11,0 1,29 0,653 26,42 8,051
20 0,0320 0,812 31,3 12,3 1,02 0,518 33,31 10,15 16/0.2
21 0,0285 0,723 35,1 13,8 0,810 0,410 42,00 12,80 13 / 0,2
22 0,0253 0,644 39,5 15,5 0,642 0,326 52.96 16,14 7 / 0,25
23 0,0226 0,573 44,3 17,4 0,509 0,258 66,79 20,36
24 0,0201 0,511 49,7 19,6 0.404 0,205 84,22 25,67 1 / 0,5, 7 / 0,2, 30 / 0,1
25 0,0179 0,455 55,9 22,0 0,320 0,162 106,2 32,37
26 0,0159 0.405 62,7 24,7 0,254 0,129 133,9 40,81 7 / 0,15
27 0,0142 0,361 70,4 27,7 0,202 0,102 168,9 51,47
28 0.0126 0,321 79,1 31,1 0,160 0,0810 212,9 64,90
29 0,0113 0,286 88,8 35,0 0,127 0,0642 268,5 81,84
30 0.0100 0,255 99,7 39,3 0,101 0,0509 338,6 103,2 1 / 0,25, 7 / 0,1
31 0,00893 0,227 112 44,1 0,0797 0,0404 426,9 130,1
32 0.00795 0,202 126 49,5 0,0632 0,0320 538,3 164,1 1 / 0,2, 7 / 0,08
33 0,00708 0,180 141 55,6 0,0501 0,0254 678,8 206,9
34 0.00630 0,160 159 62,4 0,0398 0,0201 856,0 260,9
35 0,00561 0,143 178 70,1 0,0315 0,0160 1079 329,0
36 0.00500 0,127 200 78,7 0,0250 0,0127 1361 414,8
37 0,00445 0,113 225 88,4 0,0198 0,0100 1716 523,1
38 0.00397 0,101 252 99,3 0,0157 0,00797 2164 659,6
39 0,00353 0,0897 283 111 0,0125 0,00632 2729 831,8
40 0.00314 0,0799 318 125 0,00989 0,00501 3441 1049

Когда электрический ток проходит по проводу, он должен превышать определенный уровень встречного давления. Если ток переменный, такое давление называется импедансом. Импеданс — это вектор или двумерная величина, состоящая из сопротивления и реактивного сопротивления (реакция созданного электрического поля на изменение тока).Если ток постоянный, давление называется сопротивлением.

Все это звучит ужасно абстрактно, но на самом деле мало чем отличается от воды, протекающей через садовый шланг. Чтобы протолкнуть воду через шланг, требуется определенное давление, что аналогично электрическому напряжению. Ток подобен воде, текущей по шлангу. И шланг вызывает определенный уровень сопротивления, в зависимости от его толщины, формы и т. Д. То же самое верно и для проводов, поскольку их тип и размер определяют уровень сопротивления.

Чрезмерное падение напряжения в цепи может привести к мерцанию или тусклому горению ламп, плохому нагреву нагревателей и перегреву двигателей, превышающему нормальный, и перегоранию. Это условие заставляет нагрузку работать с меньшим напряжением, проталкивающим ток.

Эксперты говорят, что падение напряжения никогда не должно превышать 3%. Для этого нужно выбрать провод правильного размера, а также позаботиться об использовании удлинителей и аналогичных устройств.

Существует четыре основных причины падения напряжения.

Во-первых, это выбор материала для проволоки. Медь — лучший проводник, чем алюминий, и будет иметь меньшее падение напряжения, чем алюминий, при данной длине и размере провода. Электричество, которое движется по медному проводу, на самом деле представляет собой группу электронов, толкаемых напряжением. Чем выше напряжение, тем больше электронов может пройти через провод.

Ampacity — это максимальное количество электронов, которые могут быть вытолкнуты за один раз — слово ampacity является сокращением от амперной емкости.

Размер провода — еще один важный фактор при определении падения напряжения. Провода большего диаметра (большего диаметра) будут иметь меньшее падение напряжения, чем провода меньшего диаметра той же длины. В американском калибре проволоки каждое уменьшение диаметра на 6 дает удвоение диаметра проволоки, а каждое уменьшение на 3 толщины удваивает площадь поперечного сечения проволоки. В метрической шкале калибра калибр в 10 раз больше диаметра в миллиметрах, поэтому метрическая проволока 50 калибра будет иметь диаметр 5 мм.

Еще одним важным фактором падения напряжения является длина провода.Более короткие провода будут иметь меньшее падение напряжения, чем более длинные провода того же диаметра (диаметра). Падение напряжения становится важным, когда длина провода или кабеля становится очень большой. Обычно это не проблема для электрических цепей в доме, но может стать проблемой при прокладке провода к пристройке, скважинному насосу и т. Д.

Чрезмерное падение напряжения может привести к снижению эффективности работы света, двигателей и приборов. Это может привести к тусклому освещению и сокращению срока службы двигателей или приборов.Поэтому важно использовать провода правильного калибра при прокладке проводов на большие расстояния.

Наконец, величина передаваемого тока может влиять на уровни падения напряжения. Падение напряжения на проводе увеличивается с увеличением тока, протекающего по проводу. Допустимая нагрузка по току такая же, как и допустимая.

Допустимая нагрузка на провод зависит от ряда факторов. Провода покрыты изоляцией, которая может выйти из строя, если температура провода станет слишком высокой. Основной материал, из которого сделана проволока, конечно, является важным ограничивающим фактором.Если по проводу передается переменный ток, скорость чередования может повлиять на допустимую нагрузку. Температура, при которой используется провод, также может влиять на допустимую нагрузку.

Кабели

часто используются в связках, и когда они соединяются вместе, общее тепло, которое они выделяют, влияет на допустимую нагрузку и падение напряжения. По этой причине существуют строгие правила связывания кабелей.

При выборе кабеля руководствуется двумя основными принципами. Во-первых, кабель должен выдерживать текущую нагрузку без перегрева.Он должен быть в состоянии сделать это в самых экстремальных температурных условиях, с которыми он может столкнуться в течение своего срока службы. Во-вторых, он должен обеспечивать достаточно надежное заземление, чтобы (i) ограничить напряжение, которому подвергаются люди, до безопасного уровня и (ii) позволить току короткого замыкания сработать с предохранителем за короткое время.

Это важные соображения безопасности. В течение 2005-2009 гг. В среднем происходило 373900 пожаров в год из-за плохого электрооборудования. Выбор правильного кабеля для работы — важная мера безопасности.

Провода и кабели

Провода, как мы определяем здесь:
используется для передачи электричества или электрических сигналов. Провода
бывают разных форм и сделаны из разных материалов. Они могут показаться простыми, но инженеры
известно о двух
важные точки:

-Электричество в длинных проводах, используемых для передачи, ведет себя совсем иначе , чем в коротких
провода, используемые в конструкции устройств

-Использование проводов в цепях переменного тока вызывает множество проблем , таких как
скин-эффект и эффекты близости.

1. Сопротивление / импеданс
2. Скин-эффект
3. Типы конструкций проводов

4. Подробнее о материалах проводов
5. Изоляция проводов

1.) Поведение электричества
в проводах: сопротивление и импеданс

Важно знать, имеете ли вы дело с постоянным или переменным током в данном проводе. Мощность переменного тока
имеет очень сложную физику, которая вызывает некоторые странные эффекты. Это была одна из причин, почему
Электроэнергия переменного тока была разработана в 1890-х годах, намного позже мощности постоянного тока.Инженеры любят
C.P. Штайнмецу пришлось
сначала разберитесь в математике и физике.

Питание переменного тока:

В сети переменного тока любит путешествовать рядом
поверхность проволоки (скин-эффект). Мощность переменного тока в проводе также вызывает
вокруг него формируется магнитное поле (индуктивность). Это поле влияет на другие
соседние провода (например, в обмотке), вызывающие

эффект близости. Со всеми этими свойствами необходимо иметь дело
при проектировании цепи переменного тока.

Питание постоянного тока:

В цепи постоянного тока ток проходит по всей длине провода.

Размер проводника и материал (питание переменного и постоянного тока):

Электричество легче передается в местах с высокой проводимостью.
элементы, такие как медь, серебро или золото, менее проводящие
Чем больше диаметр материала, тем больше должен быть диаметр, чтобы выдерживать такую ​​же токовую нагрузку.

Инженеры выбирают правильных
диаметр проволоки
для работы, повышение тока в проволоке увеличивает удельное сопротивление и выделяет больше тепла.Как вы увидите на схеме ниже, медь
может выдерживать больший ток, чем алюминий, при той же нагрузке.

Внизу: Когда сэр Хамфри
Дэви пропустил большой ток через тонкий платиновый провод в 1802 году, когда он светился.
и сделал первые лампы накаливания!
но всего через несколько секунд проволока расплавилась и испарилась из-за
тепло, вызванное сопротивлением в проводе.

Качество материала: примеси и кристаллы:

Большинство материалов содержат примеси.
В меди содержание кислорода и других материалов в меди влияет на проводимость,
поэтому медь, из которой будет сделан электрический провод, легируется по-другому.
чем медь, которая скоро станет водопроводом.

Металлы кристаллические (как вы увидите в нашем видео о меди).Монокристаллическая медь или алюминий лучше
проводимость, чем у поликристаллических металлов, однако крупнокристаллическая медь очень дорого обходится
производят и используются только в высокопроизводительных приложениях.

Удельное сопротивление:

Сопротивление в проводе описывает возбуждение электронов в проводе.
материал проводника. Это возбуждение приводит к выделению тепла и потере эффективности.
На раннем этапе создания постоянного тока Томас Эдисон не мог послать свою энергию на большие расстояния без использования
медные провода большого диаметра за счет сопротивления на расстоянии.Это сделало мощность постоянного тока
не рентабельно и допускает рост мощности переменного тока.

Измерительные инструменты:

Инженеры используют закон Ома
чтобы рассчитать, какое сопротивление будет иметь данный провод. Это говорит нам, сколько энергии мы
потеряет на расстоянии.

I = V / R Ампер = Вольт, деленное на сопротивление

Формулы сопротивления и проводимости:

Сопротивление = удельное сопротивление / площадь поперечного сечения

Проводимость = 1 / Сопротивление

Когда сопротивление хорошее:

Создание
Тепло в проводе обычно является признаком потери энергии, однако в вольфрамовом
или танталовой проволоки, тепло заставляет проволоку светиться и производить свет, который
может быть желательным.Вольфрам используется для изготовления нитей
потому что он имеет очень высокую температуру плавления. Проволока может сильно нагреться и
ярко светятся, не таять. Вольфрам очень плохо подходит для передачи энергии
поскольку большая часть прошедшей энергии теряется в виде тепла и света.

По мощности
передачи мы ищем как можно более низкое удельное сопротивление, мы хотим
для передачи энергии на большие расстояния без потери энергии из-за тепла.
Мы измеряем сопротивление в проводе в Ом на 1000 футов или метров.
Чем дольше электричество должно пройти, тем больше энергии оно теряет.

Сверхпроводящий провод и сопротивление:

Вверху: сверхпроводящий
проволоку можно превратить в металлическую «ленту»

Вверху: Карл Роснер, Марк Бенц и другие
использовали специальные катушки сверхпроводящего провода для производства всего мира
первый магнит на 10 тесла.Вместо меди используются ниобий и олово
поскольку материалы работают по-разному при разных температурах.

Одно из отличных решений для передачи энергии — это сверхпроводники.
Когда металл становится очень холодным (приближаясь к абсолютному нулю), он приобретает
проводимость бесконечности. В какой-то момент сопротивления вообще нет.
Были экспериментальные сверхпроводящие линии высокого напряжения, которые
смогли передавать мощность практически без потерь, однако технология
недостаточно развит, чтобы быть рентабельным.

Магнитные поля (индуктивность и импеданс):

Каждый провод, используемый для передачи переменного тока, создает магнитное поле, по которому течет ток. В
магнитное поле визуализируется концентрическими кольцами вокруг поперечного сечения
провода, каждое кольцо ближе к проводу имеет более прочный
магнитная сила.
Магнитные поля полезны для создания очень сильных магнитов (когда они находятся в катушке) i.е. изготовление двигателей
и генераторы, однако эти магнитные поля нежелательны в линиях электропередачи.

В то время как сопротивление провода может препятствовать прохождению тока и выделять тепло, индуктивность
провод / линия передачи также могут препятствовать прохождению тока, но это сопротивление
не выделяет тепла, так как энергия «теряется» при создании магнитного поля, а не
чем возбуждение электронов в материале. Этот импеданс называется реактивным сопротивлением переменного тока.
Схемы.Мы использовали слово «потерянный», однако сила на самом деле не потеряна, она используется для создания магнитного поля.
поле и возвращается, когда магнитное поле схлопывается.

2.) Кожный эффект:

В сети переменного тока электроны любят течь по
вне провода. Это потому, что изменение тока вперед и назад
вызывает вихревые токи, которые приводят к вытеснению тока к поверхности.

Глубина кожи

Глубина скин-слоя — это фиксированное число для данной частоты, удельного сопротивления и диэлектрической проницаемости.Чем выше частота переменного тока в системе, тем сильнее сжимается ток.
на внешней стороне провода, поэтому провод, который используется с частотой 60 Гц при заданном напряжении, будет
не будет нормально на 200 МГц. Инженеры всегда должны
При проектировании цепей учитывайте скин-эффект. Увидеть
сайт Википедии для
формула, используемая для расчета глубины скин-слоя.

Вверху: инженеры преодолевают скин-эффект с помощью изолированного многожильного провода.
Если вы сделаете отдельные пряди равными одной толщине скин-слоя, большая часть тока будет протекать по всей
поперечное сечение, и вы используете всю медь. Обратной стороной является то, что ваш провод должен иметь больший размер.
диаметр, так как вам нужно все дополнительное пространство для утепления. По мере того, как проволочные пряди становятся меньше
в диаметре, а изоляция остается той же толщины, соотношение площади меди
к изоляции может стать меньше единицы, тогда у вас будет больше изоляции, чем
медь в обмотке или кабеле.

Ниже: более высокая частота переменного тока = меньшая глубина скин-слоя. «Более быстрый» ток чередуется вперед и назад
тем больше вихревых токов он создает. Эта высокая частота
блок питания работает в диапазоне МГц, обратите внимание на специальный провод, используемый на
право. Провод кажется многожильным и оголенным, но это не так,
он имеет прозрачное эмалевое покрытие, изолирующее его, поэтому каждая небольшая жилка
несет свою часть тока, при этом ток идет снаружи
каждой пряди.Это дает большую площадь поверхности в целом и позволяет
большое количество тока для прохождения.

Вверху: Компактный люминесцентный
легкая электроника, трансформатор очень маленький и спроектирован
очень дешево. Эти детали часто выходят из строя до окончания типичного
жизненный цикл агрегата »

Инженеры и затраты
Сберегательный дизайн:

Инженеры используют математику
для расчета «глубины скин-слоя», чтобы узнать, сколько проволоки
используется для проведения электричества.Это важная часть
инженеров-электриков работают над проектированием энергосистем. Этот
работа также связана с экономией средств, как могут понять инженеры
какой калибр и какой тип провода использовать и сравнить с
другие материалы и конфигурации. Старый электрический
двигатели и генераторы из
начало 20 века, как известно, длилось долгое время, потому что
в то время инженеры могли спроектировать обмотки и тип провода
для лучшей производительности, так как затраты на оборудование и машины
были выше.Сегодня многие двигатели перегорают, потому что инженеры
вынуждены использовать самый дешевый вариант — наименьшее количество материала
который может выдерживать ток, однако, когда двигатель начинает
при перегреве более тонкие провода из более дешевого материала быстрее сгорят.
Балласты (трансформаторы) в современных системах освещения имеют общеизвестную
короткий срок службы в целях снижения стоимости единицы продукции.

Практическое упражнение:
Как затраты влияют на дизайн

Вы можете увидеть и
почувствуйте работу инженеров
по проектированию проводов вокруг вашего дома.Просто найдите старые блоки питания или профессиональные блоки питания
используется с дорогостоящими машинами или инструментами. Почувствуйте вес этих
стеновые блоки или блоки питания. Теперь найдите детскую игрушку или мобильный телефон
зарядное устройство. Почувствуйте, насколько легкими кажутся трансформаторы по сравнению с ними.
Если вам повезет, вы можете найти два трансформатора, преобразующие мощность.
от стены (120 или 220 В) на такое же напряжение постоянного тока для устройства.
Если открыть корпус, можно увидеть разницу в размерах.
калибра обмоток, а также от того, используют ли они медь или алюминий.Вы четко увидите, как влияет на дизайн общий предмет.

3.) Типы проводов:

Ниже: типов
провода, используемого коммунальными предприятиями при передаче электроэнергии:

Ниже:
фиксированная проводка, используемая в домах, а также шнуры, используемые в динамиках,
бытовая техника и телефонные системы.На рисунке ниже показаны старые
провода, которые когда-то использовались в домах (кабель SJTWA и тип SE), и современные
стандартный ромекс.

ЭЛЕКТРОПРОВОДКА с 1880-х до наших дней:

Вверху: 3 проводника
подземный медный провод (сейчас редко)

Внизу: плоская лента
провод, используемый в сверхпроводящих магнитах

Лучший провод для
работа:

Все инженеры-электрики
должны знать о проводах и думать об использовании правильной конструкции и
материал для поставленной задачи.Вот факторы для определения
конструкция проволоки:

-Прочность (способность многократно сгибаться или сдавливаться
веса)
-Уровень напряжения и тока
-Прочность подвески (способность долго удерживать собственный вес
пролеты между опорами)
— Под землей или под водой
— Температура эксплуатации (например, сверхпроводящие
проволока)
-Стоимость

Сплошная проволока:

Преимущества:
Меньшая площадь поверхности, подверженной коррозии
Может быть жесткой и прочной
Недостатки:
Не годится при многократном сгибании, может сломаться при сгибании
пятно
Непрактично для высокого напряжения

Многожильный провод:

Вверху: многожильный динамик
провод, который есть в каждом доме
Ниже: Для специального использования сверхтолстый многожильный медный провод

-Скрученный провод — много меньших проводов параллельно, можно скручивать
вместе
Преимущества:
Отличный проводник для своего размера
Недостатки:
Вы можете подумать, что это будет хорошо для высокочастотного использования, потому что
у него есть большая площадь поверхности на всех маленьких жилках проволоки,
однако это хуже, чем сплошная проволока, потому что пряди соприкасаются
друг друга, закорачивая, и поэтому провод действует как один больший
проволока, и в ней много воздушных пространств, что обеспечивает большее сопротивление
для размера

Плетеный провод:

Преимущества:
-Большая долговечность по сравнению с сплошным проводом
-Лучшая проводимость, чем сплошной провод (большая площадь поверхности)
-Может действовать как электромагнитный экран в шумоподавляющих проводах
-Чем больше жил в проволоке, тем она гибче и прочнее.
есть, но он стоит дороже

Спец. провода:

Сплошной с внешней оплеткой или какой-либо комбинацией этого, эти
провода используются для всех видов специальных применений.

Коаксиальный кабель используется для передачи радио или кабельного телевидения.
потому что по своей конструкции проводники с оплеткой и фольгой снаружи
держать частоты в ловушке внутри. Экранирование предотвращает
паразитная электромагнитная энергия от заражения области вокруг чувствительной
приемники.

Ниже: Видео о типах проводов, используемых в электроэнергетических компаниях:

Практическое упражнение:
Игра в угадывание проводов

Соберите куски металлолома
провода вокруг вашего дома или школьной мастерской, соберите короткие образцы
разных типов.Теперь используйте приведенные выше диаграммы, чтобы выяснить, что
тип проволоки, из чего она сделана, и перечислите ее применение
каждый. Покажите это своему учителю и посмотрите, правильно ли вы угадали.
Провод бывает так много экзотических видов, что вы можете оказаться
с настоящей загадкой в ​​твоих руках. Используйте поиск в Интернете, чтобы попробовать
чтобы идентифицировать все ваши образцы.

4.)
Материалы провода:

Наиболее распространенным материалом для изготовления электрического провода является медь и алюминий ,
это не самые лучшие проводники, но они многочисленны и дешевы. Золото также используется в различных областях, поскольку оно устойчиво к коррозии.
Золото используется в электронике автомобильных подушек безопасности, чтобы гарантировать, что устройство
будет функционировать много лет спустя, несмотря на воздействие вредных элементов.

Вверху: золото, использованное в
разъемы для микросхем Motorola

Золото обычно используется в контакте
области, потому что эта точка в системе более подвержена коррозии и
имеет больший окислительный потенциал.

Алюминий
обернутый вокруг стального центрального провода используется в передаче энергии, потому что
алюминий дешевле меди и не подвержен коррозии. Стальной центр
используется просто для прочности, чтобы удерживать проволоку на длинных участках. Выше
типичный кабель ACSR, используемый в воздушных линиях электропередач по всему миру.

Хорошие проводники,
твердое вещество при комнатной температуре:

Платина, серебро, золото, медь, алюминий

4.) ПРОВОДНАЯ ИЗОЛЯЦИЯ:

Слева: Для эффективного
обмотки двигателя или генератора должны быть плотно упакованы вместе,
минимизация воздушных пространств. Провода, используемые в двигателях и генераторах, обычно
покрыты эмалью, чтобы обмотки плотно прилегали друг к другу.
Традиционная резиновая или полимерная изоляция сделает провод диаметром
толще, это одна из причин, почему старые электродвигатели были больше
и тяжелее современных моторов такой же мощности.

Смотрите, как провод двигателя
упакован и намотан в современный
асинхронные двигатели в нашем видео здесь.

Подробнее о
все поле электроизоляция
на нашей странице здесь.

Практическое упражнение:
Сжечь мотор!

Вы заметили
что когда моторчик игрушки сильно нагревается, он пахнет?
Это
испарение изоляции.Тепло разрушает все виды изоляции
в конце концов, и в обмотке двигателя, когда изоляция становится слабой.
два провода рядом друг с другом будут короткими, это приведет к возникновению дуги.
и устройство сгорает.

Если взять маленький
двигатель, о котором вы не заботитесь, вы можете намеренно сжечь его
посмотреть, что происходит с обмотками. Вы можете сделать это, поставив
напряжение, превышающее рекомендованное, через устройство или при работе
мотор горячий в течение длительного периода времени.Проконсультируйтесь с электриком
или инженер, чтобы безопасно выполнить это упражнение.

Статья, фото и видео М. Велана и В. Корнрумпфа

Источники:
Университет штата Джорджия
Википедия
Волшебники Скенектади Карл Рознер. Технический центр Эдисона. 2008
Интервью с Руди Деном. Технический центр Эдисона. 2012
Видео с Денверским электродвигателем. Технический центр Эдисона. 2012
Видео с Энергетической ассоциацией Сан-Мигеля.Технический центр Эдисона. 2014 г.

Уильям Корнрумпф, инженер-электрик

.