Термостойкая монтажная пена характеристики: Пена монтажная противопожарная: характеристики и применение

Монтажная огнестойкая пена, ее характеристики и сертификат соответствия

Безопасность зданий следует обеспечивать как на стадии строительства, так и при последующих отделочных работах. Минимизировать риск возникновения пожара может применение монтажной пены с негорючими свойствами.

Часто ее путают с обычными герметиками. Разница между ними существенная. Герметики рекомендованы для заделки стыков, полостей с шириной, не превышающей 3 см. Терморасширяющаяся противопожарная пена предназначена для заполнения щелей, размеры которых составляют 3-5 см.

Состав и структура

Пенные изолирующие смеси имеют стабильную структуру, малый вес. Основу композита составляет полиуретан, при образовании которого из мономеров выделяется большое количество углекислого газа. Диоксид углерода, как известно, не поддерживает горение.

Насыщение огнестойкой монтажной пены углекислым газом обеспечивает в существенной степени термостойкость материала. Выталкивание полимерного состава из баллона происходит благодаря пропеллентам. Наиболее распространенными среди них являются пропан и бутан. Оба углеводорода легко воспламеняются, поэтому при распылении пены рядом не должны находиться источники огня.

После исторжения полимерного композита из баллона углеводороды быстро улетучиваются в открытое пространство, не ухудшая огнестойкие характеристики застывающей пены.

Жаростойкая изолирующая пена для монтажных работ насыщена антипиреновыми наполнителями. Она специально окрашена в красный или ярко-розовый цвет. Насыщенность окраски исключает возможность использования обычной желто-коричневой пены, вместо огнестойкой.

Концентрация, состав добавок антипиренов – интеллектуальная собственность производителей, защищенная патентами. Полная информация о технологии получения пенного продукта не предоставляется.

Огнестойкость материала

Класс огнестойкости в обязательном порядке должен быть подтвержден. Главный документ, позволяющий сделать выводы об огнестойких свойствах пены – сертификат соответствия.

Самая надежная пена относится к классу В1. Ею можно пользоваться при строительстве зданий с прогнозируемым большим количеством людей. Состав не поддерживает горения, не разрушается при высоких температурах, постепенно гаснет после ликвидации источника пламени. Его применяют в строительстве детских, образовательных, оздоровительных сооружений.

Следующая группа – В2 включает пенные композиты с умеренной термостойкостью. Материал может плавиться, выделяя некоторое количество вредных газов. Такую монтажную огнестойкую пену можно использовать в помещениях, не предназначенных для присутствия детей, большого количества людей.

Если свидетельство содержит информацию о принадлежности пены к классу В3, то применять ее нежелательно ни в жилых домах, ни в служебных помещениях. Такие монтажные составы обычно в строительстве не используют.

Свидетельство на товар, информация на упаковке включают данные о коэффициенте огнестойкости.

Каждое число – это количество минут, которое выдерживает огнестойкая монтажная пена при контакте с огнем. Некоторые производители рядом с числами указывают обозначения EI:

  • буквой E зашифровывают потерю целостности материала;
  • буква I указывает на изменение теплоизолирующей способности.

Например, если на баллончике имеется обозначение EI 150, значит, через 150 минут контакта с огнем застывшая монтажная пена может растрескаться, образовать щели, через которые начнут проникать пламя и газ. Соответственно, способность изолировать пространство сведется к минимуму.

Температура при монтаже

Важно обратить внимание на рекомендованные для монтажных работ температуры окружающей среды. По этому признаку негорючие огнестойкие пены подразделяются на зимние и летние.

С зимними монтажными составами можно работать на морозе, при температуре от -5 до -10 ℃. Во многих регионах страны зимние морозы сопровождаются большим падением температуры.

При сильно отрицательных температурных значениях с монтажными работами следует повременить. Производители не гарантируют заявленные свойства в случае невыполнения указанных условий.

Огнестойкие летние пены можно применять при температуре, значение которой превышает +5 ℃. Верхний предел температурных величин обычно не лимитируется, хотя специалисты рекомендуют не проводить монтаж при температуре выше +35 ℃.

При значениях, приближающихся к нулевым, фиксирование может стать недолговечным из-за плохой адгезии.

Огнестойкая пена не зафиксируется на объекте должным образом. При любой температуре перед работой швы, подлежащие заделке, нужно очистить. Некоторые специалисты рекомендуют нанести предварительный тонкий слой грунтовки.

Рекомендации по применению

Огнестойкая монтажная пена предназначена для зданий, в которых велик риск воспламенений. Особенно ответственного отношения требует выбор материала для помещений с возможностью большого скопления людей.

Огнестойкие пенные материалы обеспечивают безопасность монтажа:

  • оконных и дверных конструкций;
  • элементов электрических коммуникаций;
  • узлов и блоков отопительного назначения;
  • дымоходов, печей, каминов, трубопроводов для теплоносителей;
  • утеплителей любых внутренних конструкций;
  • кровельных покрытий для крыш любой формы.

В зависимости от места нанесения подбирают класс пенного монтажного материала, коэффициент его огнестойкости.

Нанесение пенящегося огнестойкого сырья требует определенных навыков. Состав сильно увеличивается в объеме, что нужно учитывать при набрызгивании. Важно, правильно выбрать расстояние для распыления, угол наклона баллона или пистолета.

Ширина зазора не может быть маленькой, не должна превышать рекомендуемые размеры. Оптимальное количество гарантирует заявленную огнестойкость, термоизолирующие свойства, способность поглощать звук.

Выбор качественной огнестойкой пены, грамотный монтаж могут обеспечить опытные профессионалы. Учитывая стоимость продукции, лучше будет обсудить заказ с консультантами, изучить инструкцию и сертификаты, найти ответственных исполнителей для проведения монтажных работ. Усилия непременно оправдаются результатами.

Загрузка…

Другие полезные статьи:

История, применение и характеристики огнестойкой монтажной пены

Опубликовано: 2014.01.22

Общие представления об огнестойкой монтажной пене

Огнестойкая монтажная пена — это разновидность монтажной пены, предназначенной для создания огнестойкой изоляции, а также защиты от повышенных и высоких температур. Огнестойкая монтажная пена применяется для тех работ, которые производятся с учетом повышенных требований к огнестойкости помещения.

Вообще монтажная пена была получена 1947 году, группой ученых во главе с Отто Байером. В результате опытов, проводимых с полиуретаном, ученые совершенно случайно получили полимер, имеющий интересные свойства. Байер вряд ли мог предположить, что открытый им пенополиуретан через несколько десятков лет станет широко применяться в строительной сфере. Изначально полиуретаны применялись в промышленности и строительстве как изоляционные плиты. В начале 1970х годов английская компания «Royal Chemical Industry» первой создала баллон с монтажной пеной (PUR), однако первой в строительстве монтажную пену применила Швеция в начале восьмидесятых годов прошлого столетия.

В России огнестойкая монтажная пена появилась в начале 90х годов прошлого столетия.

Характеристики

Адгезия

Огнестойкая монтажная пена обладает великолепными адгезионными свойствами — она хорошо «работает» почти со всеми строительными материалами – кирпичом, деревом, пластиком, металлом, стеклом и пр. Исключение составляют: тефлон, полиэтилен, полипропилен и прочие материалы этого семейства. Хорошие адгезионные свойства огнестойкой монтажной пены, облегчают работу и позволяют выполнять ее быстро и качественно

Влагоустойчивость

Не боится влаги. При защите огнестойкой монтажной пены от ультрафиолетовых лучей не разрушается и не сжимается со временем.

Усадка

Дает небольшую усадку, что повышает прочность соединений. Лучшие образцы огнестойкой монтажной пены имеют коэффициент усадки всего около 3%. Такая прочность соединений, при использовании огнестойкой монтажной пены, позволяет производить монтаж некоторых конструкций, не используя анкерные болты.

Пористость

Правильно созданная пористая структура пены должна обеспечивать стабильность поведения пены со временем. Качественная монтажная пена содержит в своем объеме не менее 88% закрытых пор, что исключает создание «раковин».

Полимеризация

В пустотах шириной до 40 см огнестойкая монтажная пена должна полимеризовываться — т.е. «застывать» — за 2-3 часа. Такое небольшое время полимеризации позволяет существенно экономить и правильно планировать рабочий процесс.

Изоляция

Огнестойкая монтажная пена обладает отличными звуко-, гидро- и теплоизоляционными свойствами. К примеру, коэффициент теплопроводности хорошей пены составляет — 0,032Вт/м.кв., тогда как минеральная и стекловата обладают худшими показателями (0,038В т/м.кв.)

Экологичность

Огнестойкая монтажная пена является экологически чистым материалом.

Назначение и применение огнестойкой монтажной пены


Основная задача огнестойкой монтажной пены — это заполнение пустот в открытых и сквозных швах, в конструкциях, где особо важно создание огнестойкой защиты всего сооружения. Применение огнестойкой монтажной пены возможно как при внутренних, так и наружных работах, в любых климатических условиях. К примеру, это небольшие пустоты в противопожарных преградах, в пустотах между дверными и оконными блоками и стеновым проемом.

Помимо своей основной функции, огнестойкая монтажная пена является еще и отличным тепло- и звукоизолятором, не пропускающим дым и газы.

Таким образом, везде, где необходимо снизить теплопотери, можно с успехом применять огнестойкую монтажную пену.

Благодаря своей консистенции, огнестойкая монтажная пена, при нанесении на вертикальные покрытия, стекает вниз и обеспечивает, тем самым, заполнение существующих пустот.

Способ применения

Перед применением огнестойкой монтажной пены желательно придать ей температуру того помещения, в котором она будет «работать». Поверхности, на которые будет наноситься огнестойкая монтажная пена, должны быть очищены от грязи и пыли и обезжирены. Перед употреблением необходимо потрясти баллончик с пеной.

Баллон с пеной бывает двух видов — любительский и профессиональный. Состав пены в обоих баллонах совершенно одинаков. Разница только в выпускном клапане баллона. В любительском баллоне на пластмассовый клапан надевается трубочка, через которую выпускается пена. Профессиональный баллон имеет резьбу, предназначенную для крепления на специальный пистолет для баллонов.


Некоторые полезные советы

Пустота заполняется не полностью, так как выдавленный объем пены увеличиться в 2-3 раза.

При заполнении пустот диаметром более 5 см, пена наносится в несколько слоев, причем каждый последующий слой наносится после затвердевания предыдущего.

Если температура Вашего баллончика с пеной существенно ниже комнатной, ни в коем случае не нагревайте баллон над огнем, опустите Ваш баллончик минут на 20 в теплую воду.

Если Вы закончили работу с пеной на этот день и будете продолжать работу, к примеру, завтра, а в баллончике остается пена, создайте каплю пены, которая надежно закроет вход в трубочку баллончика.

При необходимости нанесения пены на сухую поверхность, немного увлажните эту поверхность, так как полимеризация и превращение пены в твердый пенополиуретан проходит под действием влаги.

Отделочные работы поверх монтажной пены, такие как обрезка, окраска, оклейка и пр., производите только после полного отвердевании пены.

Помните, что огнестойкую монтажную пены необходимо защищать от разрушающего воздействия ультрафиолетовых лучей.

Техника безопасности при работе с огнестойкой монтажной пеной

Производить работы с использованием огнестойкой монтажной пены, рекомендуется в спецодежде и перчатках.

Запрещается:

  • нагревать баллон свыше 50 град.С
  • вдыхать пары пены.
  • работать с поврежденным баллоном, т.к. пена, находится в нем под давлением
  • хранить вблизи источников огня
  • после использования содержимого баллончика, нельзя бросать его в огонь

Использовать огнестойкую монтажную пену необходимо в хорошо проветриваемых помещениях.

Загрязнения, созданные огнестойкой монтажной пеной, необходимо удалять сразу после появления. Засохшую монтажную пену удаляют механическим способом — соскабливанием.

Для удобства использования, производители монтажной пены создали аэрозоль-очиститель, способный удалять свежие следы пены.

При случайном попадании огнестойкой монтажной пены в глаза, необходимо сразу же промыть глаза чистой проточной водой, после чего сразу же обратиться к офтальмологу.

Огнестойкую монтажную пену необходимо беречь от детей.

Преимущества использования огнестойкой монтажной пены

Огнестойкая монтажная пена благодаря своим специфическим качествам имеет ряд существенных преимуществ перед обычными монтажными пенами, и дает лучшие результаты.

Так как огнестойкая монтажная пена обладает еще и газо- и дымоизолирующими свойствами, то именно такой пеной рекомендуется уплотнять щели вокруг дымоходов, слуховых окон, между потолком, полом и прилегающими к ним стенами.

Среди преимуществ огнестойкой монтажной пены отметим и относительную дешевизну, а также ее экономичность при нанесении.

Огнестойкая монтажная пена, в отличие от обычной монтажной пены, устойчива к появлению плесени и влаги, спокойно переносит перепады температур от минус 60 град. до плюс 100 град.С.

Так как после застывания, огнестойкая монтажная пена дает более прочный слой чем обычные монтажные пены, то с ней можно производить любые другие работы — резать, красить, оклеивать и т.п.

Нестандартное применение

Помимо стандартного применения огнестойкой монтажной пены, существуют иные, совсем нестандартные варианты ее использования.

Используя ее плотность после застывания, пену используют в качестве материала для изготовления различного рода поделок, изготовления декоративных украшений, скульптур.

Из огнестойкой монтажной пены делают даже бамперы для автомобилей. Суть изготовления изделий из монтажной пены в том, что работая с пеной, Вы можете легко воплощать в жизнь любые идеи и задумки.

Интересно

Американские ученые работают над созданием специальной пены, которая поможет остановить внутреннее кровотечение. Такие ранения представляют особую опасность, так как кровь невозможно остановить без хирургического вмешательства. Специалисты надеются, что новый препарат сохранит жизнь раненым и поможет им продержаться до оказания соответствующей помощи.

Агентством по перспективным оборонным научно-исследовательским разработкам США, совместно с компанией Arsenal Medical, на основе полиуретана уже разработано такое средство. Препарат состоит из двух жидких компонентов, которые при смешивании увеличиваются в объёме в 30 раз, подобно монтажной пене.

После инъекции получившееся вещество, больше похожее на кашу, заполняет брюшную полость и мягко обволакивает внутренние органы. Таким образом, удается как минимум на час остановить кровопотерю. Как показывает статистика, именно первый час после получения тяжёлой брюшной травмы является определяющим для спасения жизни человека.

Создатели отмечают, что удалить пену из брюшной полости медикам будет несложно. Она не прилипает к тканям и хирурги могут полностью убрать её всего за минуту.


Помните, что применение огнестойкой монтажной пены — это лучший способ остановить распространение пожара, обезопасить Вас и Ваше помещение.

Страница не найдена — proffidom.ru


Огнетушители


Выбор типа и расчет, сколько огнетушителей должно быть в помещении осуществляется по нормам для


ГОСТ


Скачать: ГОСТ 27924-88.pdf


Огнетушители


При тушении электроустановок до 10 кВ можно применять огнетушители с маркировкой для кл. E


Пожарные шкафы


Общее состояние пожарной безопасности отдельного объекта определяется наличием и доступностью средств пожаротушения. Первичные средства


ГОСТ


Скачать: ГОСТ 20477-86.pdf


Системы пожаротушения


Автономные модули порошкового пожаротушения позволяют гасить пожар без подготовки и непосредственного участия человека. МПП

Страница не найдена — proffidom.ru


Огнезащита


Современные системы водопровода в многоэтажном доме в основном изготавливаются из полимеров, которые под воздействием


НПБ


Скачать: НПБ 178-99.pdf


СП и СНиП


Скачать: СП 42-101-2003.pdf


ГОСТ


Скачать: ГОСТ Р 53630-2015. pdf


ГОСТ


Скачать: ГОСТ 28130-89.pdf


ГОСТ


Скачать: ГОСТ IEC 60695-2-11-2013.pdf

Монтажная пена термостойкая огнеупорная для печей Kudo Rush Firestop Flex 65

Монтажная пена термостойкая Kudo Rush 65

Продукт специально разработан для монтажа светопрозрачных конструкций, а также широкого спектра профессионального применения в области герметизации и тепло- и звукоизоляции изоляции в строительстве. Монтажная пена идеально подходит для печей и конструкций с повышенными требованиями огнестойкости. Входящие в состав модификаторы структуры FSFT® обеспечивают оптимальное заполнение монтажного шва с низким давлением при расширении и отверждении, что, при правильном применении, исключает деформацию элементов конструкций (оконных рам, дверных блоков, подоконников и пр.). Особенностью всей линейки пены RUSH FIRESTOP FLEX является равномерность выхода пены из баллона в течение всего процесса заполнения шва. Полностью отвержденная пена RUSH, благодаря повышенной гидрофобности поверхностного слоя и большого содержания закрытых пор, значительно снижает проникновение влажного воздуха через монтажный шов, тем самым сохраняет высокие теплоизоляционные показатели шва в различных климатических условиях, что сокращает эксплуатационные расходы по отоплению зданий. Имеет превосходную адгезию к большинству строительных материалов, таких как бетон, кирпич, дерево, металл, пластик, за исключением полиэтилена, полипропилена и фторопласта.

Преимущества термостойкой пены Kudo Rush

  • Вторичное расширение — не более 25%.
  • Низкое деформационное давление на конструкцию при отверждении — не более 8 кПа. (TM 1009:2013).
  • Выход пены — до 65 литров*..
  • Время образования поверхностной пленки — до 12 минут*.
  • Время первичной обработки — до 35 минут*
  • Стабильность размеров во всем температурном диапазоне эксплуатации монтажного шва.
  • Высокая устойчивость к сырости и плесени.

  * При температуре +23°С и относительной влажности 50%

Применение пены термостойкой пены Kudo Rush

  • Работы рекомендуется проводить при температуре от –10°С до +35°С и относительной влажности воздуха не менее 50%.
  • Рабочая температура баллона от +15°С до +30°С, оптимальная от +18°С до +20°С.
  • Для аккуратного выполнения работ рекомендуется закрыть пленкой прилегающие поверхности.
  • Пену наносить на предварительно очищенные от пыли, грязи, жира, льда и инея поверхности.
  • Рабочие поверхности перед нанесением пены увлажнить при температуре окружающей среды выше 0°С.
  • Рабочее положение баллона — ДНОМ ВВЕРХ.
  • Выход пены регулировать с помощью винта пистолета.
  • В процессе работы периодически встряхивать баллон. После нанесения увлажнить пену водой с помощью распылителя при температуре окружающей среды выше 0°С.
  • Избыток пены после полного затвердевания срезать ножом.
  • Незатвердевшую пену удалить «Очистителем монтажной пены.
  • Для отвержденной пены использовать «Удалитель застывшей монтажной пены.
  • После полной полимеризации (24–48 часов), затвердевшую пену можно резать, штукатурить, окрашивать.
  • Беречь от воздействия УФ-лучей и атмосферных осадков.

Правила применения

Подготовка поверхностей

  • Обеспечить устойчивость поверхностей, очистить их от веществ, способных ухудшить адгезию.
  • Для улучшения адегзии, при работе с минеральными пористыми поверхностями, (кирпичная кладка, бетон, известняк) увлажните их опрыскиванием водой.
  • Прилегающие поверхности укрыть пленкой.

Подготовка баллона

  • Температура нанесения (окружающая) этого изделия — от -10°C до +30°C.
  • Предпочтительно перед применением выдержать баллон при комнатной температуре в течение 12 часов. Рекомендуемая температура баллона +5 … +30 °C.
  • Перед применением баллон тщательно потрясти (15 — 20 раз).
  • Снять с баллона колпачок и плотно навернуть ее на пистолет.
  • При работе со пистолетом всегда держать баллон дном вверх.
  • Скорость вытекания пены контролируется нажатием на курок пистолета.

Нанесение

  • Распределять пену умеренно, не допуская избыточного расхода.
  • Во время нанесения периодически встряхивать баллон. Не рекомендуется снимать неполностью опорожненный баллон.
  • Перед заменой баллона, тщательно встряхивать новый баллон. Новый баллон устанавливать немедленно после снятия с пистолета использованного баллона, чтобы не допустить попадания в пистолет воздуха.
  • Если новый баллон устанавливать не нужно, очистить пистолет от пены специальным чистящим средством.
  • Отвердевшую пену можно удалить только механическим путем.

Рекомендации

Существуют ограничения максимальной ширины шва с учетом окружающей температуры и влажности. В сухих условиях (зимой, в помещениях с центральным отоплением и т.д.) для получения наилучшей структуры и свойств пены рекомендуется заполнять щели и швы в несколько слоев, нанося более тонкие полоски пены (до 3-4 см толщиной) и слегка смачивая каждый слой. Для получения наилучшего результата рекомендуется использовать аппликатор, испытанный и одобренный производителем пены.

RUSH

Торговая марки известного Российского производителя монтажных пен, красок, клеев и герметиков KUDO.

Монтажная пена огнеупорная для дымоходов Penosil Fire Rated B1 750 мл



Высококачественная профессиональная огнеупорная термостойкая пена с маленьким последующим расширением для требовательных строителей. Огнестойкость соответствует европейскому стандарту EN 1366-4 и стандарту DIN 4102-1. Классифицирована в соответствии со стандартом EN 13501-2:2007. Используется с применением входящего в комплект аппликатора. Новый, более тонкий аппликатор, обеспечивает лучшую структуру пены и больший выход. Новый спусковой крючок подходит для временного перекрывания доступа воздуха в случае приостановки работ. Пена огнеупорная производится в аэрозольных баллонах, используется с применением входящего в комплект аппликатора, затвердевает под воздействием влажности воздуха. Затвердевшая пена является хорошим тепло- и звукоизолятором. Пена обладает хорошими клеящими свойствами. Хорошо сцепляется с большинством строительных материалов, за исключением «тефлоновых», полиуретановых и силиконовых поверхностей. Затвердевшая пена не выдерживает воздействия ультрафиолета и требует покрытия.

Применение пены огнеупорной Penosil для дымоходов


  • Установка и герметизация огнеупорных дверей, оконных блоков, подоконников, фиксация стеновых панелей, перегородок, черепицы для крыши;
  • Для дымоходов;
  • Заполнение пустот и швов;
  • Изоляция и фиксация труб и электропроводок в проходах.

Преимущества пены Penosil для дымохода


  • Монтажная пена для использования с аппликатором;
  • Предназначена для герметизации, изоляции и монтажа конструкций с повышенным классом огнестойкости;
  • Испытана на огнестойкость в соответствии с требованиями ГОСТ 30247.0-94;
  • Предел огнестойкости EI 15 – EI 180;
  • Соответствует европейскому стандарту EN 1366-4 и стандарту DIN 4102-1;
  • Сертифицированная монтажная пена с высокой огнестойкостью;
  • Сохраняет герметичность шва при высоких температурах до 3-х часов;
  • Эффективно герметизирует и защищает от дыма и газа.

Правила применения монтажной пены термостойкой Penosil для дымохода

Подготовка поверхностей

  • Обеспечить устойчивость поверхностей, очистить их от веществ, способных ухудшить адгезию.
  • Для улучшения адегзии, при работе с минеральными пористыми поверхностями, (кирпичная кладка, бетон, известняк) увлажните их опрыскиванием водой.
  • Прилегающие поверхности укрыть пленкой.

Подготовка баллона

  • Температура нанесения (окружающая) этого изделия — от +5°C до +30°C.
  • Предпочтительно перед применением выдержать баллон при комнатной температуре в течение 12 часов. Рекомендуемая температура баллона +5 … +30 °C.
  • Перед применением баллон тщательно потрясти (15 — 20 раз).
  • Снять с баллона колпачок и плотно навернуть ее на пистолет.
  • При работе со пистолетом всегда держать баллон дном вверх.
  • Скорость вытекания пены контролируется нажатием на курок пистолета.

Нанесение

  • Распределять пену умеренно, не допуская избыточного расхода.
  • Во время нанесения периодически встряхивать баллон. Не рекомендуется снимать неполностью опорожненный баллон.
  • Перед заменой баллона, тщательно встряхивать новый баллон. Новый баллон устанавливать немедленно после снятия с пистолета использованного баллона, чтобы не допустить попадания в пистолет воздуха.
  • Если новый баллон устанавливать не нужно, очистить пистолет от пены специальным чистящим средством.
  • Отвердевшую пену можно удалить только механическим путем.

Рекомендации

Существуют ограничения максимальной ширины шва с учетом окружающей температуры и влажности. В сухих условиях (зимой, в помещениях с центральным отоплением и т.д.) для получения наилучшей структуры и свойств пены рекомендуется заполнять щели и швы в несколько слоев, нанося более тонкие полоски пены (до 3-4 см толщиной) и слегка смачивая каждый слой. Для получения наилучшего результата рекомендуется использовать аппликатор, испытанный и одобренный производителем пены.

PENOSIL

Krimelte — это компания, занимающаяся производством под торговой маркой PENOSIL полиуретановой монтажной пены, бытового и строительного герметика. 1994 год основания компании в Эстонии, а производство началось спустя четыре года в 1998 году. С тех пор Krimelte быстро превратилась из дистрибьюторской компании, в одного из ведущих производителей в Европе.
Так как Эстония расположена в регионе с суровым северным климатом, потребность к свойствам продукции очень высоки. Krimelte работает над улучшением качество своей продукции и расширяет ассортимент. Основными торговыми марками являются penoflex, remontix, penoseal, penofix, stiffplast, cleamor. Многие из клиентов компании являются профессиональными конечными пользователями, это подтверждает, что Krimelte можем гарантировать наилучшее качество, сервис и цены своей продукции.
Быстрота обслуживания, лояльность и стабильность являются основными словами, которые описывают работу этой молодой команды. Krimelte начинала как дистрибьюторская компания, и поэтому может лучше понимать повседневные проблемы и потребности клиентов, чем кто-либо другой. Широкий ассортимент высококачественной продукции Пеносил подходит для использования как профессионалами, так и дома. Она продается в более чем 50 странах мира.

Пена монтажная огнестойкая: особенности материала, правила применения

Производители присваивают продукции разные названия – огнеупорная, огнестойкая, противопожарная, пожаростойкая пена. Но все эти названия говорят об одном – в составе пены есть антипирены, обеспечивающие материалу защиту от огня. Многочисленные тесты и эксперименты  при воздействии газовой горелки  показывают, огнестойкая монтажная пена не оплавляется, не тлеет и не горит. При прямом воздействии источника огня она может покрываться черной коркой на поверхности, но внутри пены долгое время не происходит никаких изменений.

Особенности материала

При нанесении монтажной пены, состав не стекает по вертикальным поверхностям и может проникать в любые пустоты и полости, что является главным преимуществом материала. При выборе марки нужно обращать внимание на устойчивость герметика к влаге и плесени.

Основные особенности:

  • Способность выдерживать высокие температурные перепады.
  • Оптимальный уровень надежности и прочности материала.
  • Замедленное воспламенение при воздействии прямого огня.
  • Характеристики самозатухания при возникновения пожара.
  • Огнестойкая монтажная пена значительно увеличивается в объеме.
  • Обладает выраженными адгезивными свойствами.

Внимание: Согласно требованиям СНиП, розовая и красная  огнестойкая пена, используется для заполнения монтажных пустот, герметизации швов при установке каминов, печей, отопительного оборудования, заполнения пространства между оконными и дверными проемами, обработки кабельных коммуникационных каналов. Чтобы пена не разрушалась от прямого воздействия солнечных лучей, ее нужно закрывать.

Состав пены

Чтобы уберечь дом от огня и для обеспечения высокой пожарной безопасности зданий, на этапе строительства используется противопожарная монтажная пена, которая улучшает характеристики любой постройки. Негорючие строительные компоненты служат для изоляции зданий от огня в случае возгорания. Большая часть материалов представляют собой однокомпонентные полиуретановые составы, сразу готовые к использованию. Специальные вещества обеспечивают надежную пожарную защиту, термический эффект и оптимальные звукопоглощающие  свойства.

В состав материала входят:

  1. Катализаторы. Необходимы для ускорения расширения состава после нанесения. Позволяют использовать материал в холодное время года.
  2. Стабилизаторы. Отвечают за свойства пенообразования и равномерность нанесения материала.
  3. Вспениватели. Выполняют важную роль в составе, поскольку влияют на коэффициент расширения и расход жаростойкой монтажной пены.
  4. Газ. Необходим, чтобы при использовании пены она выталкивалась из баллона.

Для окрашивания огнезащитной изоляции в ярко розовый или красный цвет используются красители, включаемые в состав. После нанесения, герметик увеличивается в объеме, но по показателям пенообразования уступает обычной монтажной пене.

Классы огнестойкости

Согласно правилам безопасности, негорючую монтажную пену рекомендуется использовать во всех местах с большим или постоянным скоплением людей. Выбор материала зависит от уровня пожароопасности помещения. Все виды герметиков разделяют на несколько классов по показателю огнестойкости:

  • В1 – не поддерживает горение, самозатухает, если устранен источник огня, длительное время сохраняет свои огнестойкие свойства.
  • В2 – монтажная пожаростойкая пена плавится, выделяя небольшое количество токсинов, изоляция самозатухает.
  • В3 – полиуретановая монтажная пена как противопожарная изоляция используется редко, невысокий коэффициент огнестойкости.

«Прочитать» характеристики пены можно по маркировке на тубе. Показатель 30 обозначает, что герметик будет сохранять форму и свойства на протяжении получаса при воздействии огня, данный материал допускается использовать для изоляции строений с вместительностью до трехсот человек. Если на тубе указано 60 и EI 90, это значит, что огнезащитная монтажная пена эффективно сопротивляется огню час и полтора часа соответственно. Герметик можно использовать в общественных помещениях с большой проходимостью людей.

При нанесении маркировки 120 и EI 150 сопротивляемость обозначена как 120 и 150 минут, поэтому материал подходит для изоляции оборудования и помещений с высокотемпературным режимом – дымоходы, печи, производственные цеха.

Эксплуатационные характеристики

Важно понимать, что огнестойкость не обозначает полную невозможность возгорания. Герметик сопротивляется огню определенное время, но при длительном воздействии загорится. Срок сопротивляемости у всех производителей ставится различный, что влияет на эксплуатационные характеристики составов.

Дополнительные свойства:

  1. В высокотемпературном диапазоне от -60 до +100 градусов полностью сохраняются полезные свойства монтажной пены.
  2. Абсолютно инертная к влаге, грибку и образованию плесени, которые не удерживаются на затвердевшем герметике.
  3. Обладает повышенными прочностными характеристиками относительно обычной пены.
  4. При нагревании не плавится, не стекает каплями, обладает выраженными свойствами самозатухания.

Единственным минусом является невозможность противостоять солнечному свету, поскольку ультрафиолетовые лучи разрушают герметик и его свойства. Чтобы защитить изоляцию, пену обрабатывают цементным раствором или шпатлевкой, в некоторых случаях окрашивают.

Пожаростойкая пена представлена на рынке несколькими видами, которые отличаются по компонентному составу, эксплуатационным свойствам и временем сопротивления открытому пламени. Огнестойкую монтажную пену классифицируют в зависимости от назначения и описания свойств и характеристик огнестойкости . Производители выпускают герметики по собственным технологиям, добавляя в составы различные компоненты в неодинаковых пропорциях, поэтому огнеустойчивые герметики обладают неодинаковыми свойствами:

  • По сезонности – всесезонная и зимняя.
  • По составу — однокомпонентная и двухкомпонентная.
  • По области использования герметик бывает бытовой и профессиональный строительный.

Необходимо соблюдать рекомендации производителя по нанесению монтажных швов, работать герметиком в заданном температурном диапазоне. Разновидность состава выбирают в зависимости от цели использования изоляции для прохождений различной площади проходимости. Учитывают категорию пожароопасности зданий, оборудования, коммуникационных каналов.

Область использования

Широкую популярность огнестойкая пена получила благодаря хорошим свойствам и характеристикам. Универсальность использования герметика позволяет использовать его в разных областях строительства. Термоустойчивая розовая пена или красная монтажная пена применяется для решения следующих задач:

  • Изоляция оборудования бань и саун.
  • Обработка печей, каминов, котлов.
  • Запенивание нагревательных приборов.
  • Помещения с высокими температурами.
  • Герметизация оконных и дверных проемов.
  • Повышенные условия пожаробезопасности.

Можно применять огнестойкие материалы в любых местах, если нормативы пожарной безопасности этого требуют. Герметиком заполняют монтажные швы и зазоры, противопожарные перегородки, любые пустоты в стенном пространстве и плитах перекрытия. Использование изоляции оправдано вокруг электропроводов, розеток, выключателей и других участков, склонных к самовозгоранию.

Важно: Монтажная огнеупорная пена для труб дымоходов служит хорошей изоляцией от огня, поглощает посторонние звуки. Чтобы материал обеспечивал должный уровень защиты, герметик наносят слоем не менее 3-10 см. Для распенивания состава оптимальной является температура 5-30 градусов, а если баллон занесли с мороза, нужно дать оставить тубу в тепле, но не использовать принудительный прогрев, разрушающий полезные свойства герметика.

Лучшие производители огнестойкой пены на рынке

Производством герметиков занимаются многие компании, поэтому потребителям предложен обширный выбор продукции. Все герметики отличаются по составу, классу, пределу огнестойкости. Баллоны с пеной имеют разный объем и выход. Чтобы правильно выбрать пожаростойкую изоляцию, нужно оценить маркировку и характеристики пены. Краткий обзор по производителям:

  1. DF – горючий герметик, предел сопротивляемости огню составляет 150 минут. По цвету пена розовая, упакована в тубу объемом 0,74 л, на выходе дает 25 л изолирующей смеси.

2. СР 620 – терморасширяющаяся пена двухкомпонентного состава. Обладает улучшенными характеристиками для защиты от воды, пара и дыма, но на выходе дает 1,9 литра герметика.

3. Penosil – герметик лучше всего подходит для изоляции черепичных кровель. На протяжении 3-х часов эффективно сопротивляется огню, можно использовать для установки огнеупорных дверей

4. Российский материал Profflex используется в бытовых целях и профессиональными строителями. Является всесезонным материалом, можно наносить состав при температуре до -15°C.

5. Огнестойкий герметик Remontix обладает высоким порогом сопротивляемости огню. Обязательно нужно наносить на монтаж защитную обработку. Выход из баллона достигает 65 литров.

6. Огнеза EI 240 российского производства – качественный герметик, который можно наносить при температуре +5…+35°С. Выпускается в баллонах по 935 г, дает на выходе 45 л монтажной пены.

7. Makroflex FR77 – популярный герметик европейского качества, имеет обширную область использования. Применяется для герметизации панельных домов.

Профессиональные строители часто используют герметик Soudal с увеличенным температурным диапазоном эксплуатации, бюджетный герметик DKC итальянского производства для мгновенной изоляции и продукцию других известных брендов. На рынке представлен обширный товарный ассортимент.

На видео: Oбзор и тест негорючей монтажной пены

Правильный расчет расхода

Грамотная герметизация монтажных швов, зазоров и пустот должна выполняться с учетом правильного расхода материала. При нанесении герметики образуют разное количество изоляции, что зависит от компонентного состава, размера заполняемого пространства.

Усредненный показатель расхода материала на 1 кв. м обрабатываемой поверхности указывается производителем на тубе. Но бывают различные нюансы работы, которые требуют увеличить объем или толщину герметичного слоя. Не все пены одинаково равномерно ложатся в пазы и швы, часть материала остается вокруг обрабатываемых зазоров. Мастера рекомендуют приобретать материал с запасом, а при расчете расхода учитывать несколько факторов:

  • Компонентный состав.
  • Площадь пространства.
  • Вариант нанесения пены.
  • Влажность рабочей зоны.
  • Дозатор, регулирующий объем.

В специализированных строительных компаниях при выполнении подсчетов расхода огнестойкой изоляции учитывают, что заполнение пустот происходит в нормальном температурном режиме профессиональным оборудованием. Если нужно обработать оконный проем, закладывают толщину шва 3,5-4 см. При монтаже блочного утеплителя средний расход герметика равен десяти литрам. Данные, указанные производителем на таре, можно принимать для приблизительных подсчетов, но всегда учитывать минимальный запас герметика, поскольку на его расход влияет глубина и ширина шва, равномерность нанесения.

Советы от мастеров

Чтобы выбрать качественную пену с огнестойкими свойствами, нужно отдавать предпочтения проверенным надежным брендам. Обязательно следует обращать внимание на маркировку производителя, в которой отражается класс огнестойкости, горючесть монтажной пены, время сопротивляемости воздействию огня и выход состава с учетом коэффициента терморасширения. Советы мастеров по использованию монтажных огнестойких герметиков:

  • Качество материала зависит от длительности сопротивления открытому пламени.
  • Перед использованием баллончик нужно несколько раз встряхнуть, чтобы активизировать катализаторы.
  • Обязательно нужно очищать и увлажнять рабочую поверхность перед использованием герметика.
  • Для лучшей адгезии состава обрабатываемый участок можно прогрунтовать.
  • Баллоны с пеной нужно хранить вертикально, а перед использованием встряхивать.
  • Для равномерного нанесения состава тубу необходимо держать к поверхности под углом 90 градусов.

Зазор заполняют на третью часть, остальной объем набирается при расширении герметика.

Не рекомендуется наносить огнестойкую пену на холоде, а для равномерного распределения состава лучше использовать пистолет.

Оптимальная температура использования материала +20+23 градуса. Если нет крайней необходимости, не стоит выполнять работы в холодное время года. Огнестойкая изоляция обеспечивает надежную герметизацию пустот и швов, хорошо сопротивляется открытому огню, на порядок прочнее обычных герметиков. Рекомендуется использовать материал во всех местах и помещениях, где есть перегрев оборудования, открытое пламя и не исключена вероятность возгорания.

Как пользоваться монтажной пеной — советы мастеров (2 видео)


Разновидности монтажной пены (20 фото)

Основные материалы> Пенополиуретан — NetComposites

Мир полиуретановой пены очень велик и разнообразен — велики шансы, что вы сейчас сидите на каком-то гибком пенополиуретане — но полезными продуктами для композитных наполнителей являются жесткие пены.

Термин «жесткий пенополиуретан» включает два типа полимеров: полиизоциануратные составы и полиуретановые составы. Между ними есть явные различия как в способе их создания, так и в эффективности результатов.

Пенополиизоцианурат

Полиизоциануратные пены (или «тримерные пены»), как правило, представляют собой пенопласты изоляционного качества низкой плотности, обычно получаемые в виде больших блоков с помощью процесса непрерывной экструзии. Эти блоки затем пропускаются через режущие машины для изготовления листов и других форм. Пенополиизоцианураты обладают превосходными изоляционными свойствами, хорошими характеристиками прочности на сжатие и термостойкостью до 300 градусов по Фаренгейту. Они производятся в больших объемах при плотности от 1,8 до 6 фунтов на кубический фут и относительно недороги.Их жесткая, хрупкая консистенция и их склонность к пылеобразованию (рыхлость) при истирании могут служить для идентификации этих пен.

Именно эта хрупкость ограничивает применимость полиизоциануратных пен в композитных панелях, поскольку это отсутствие ударной вязкости на поверхности пенопласта может вызвать разрушение соединения пенопласта с ламинатом в условиях вибрации или изгиба. По этой причине структурное использование этих пеноматериалов часто ограничивается формами внутренней формы для стрингеров и арматуры шляпного профиля в конструкции лодок из стеклопластика.В данном случае пена не имеет вспомогательной функции, кроме как придавать форму уложенному поверх нее композиту из волокна и смолы.

Другие области применения включают изоляцию под плитами в холодильных хранилищах и изоляцию ниже уровня для других строительных конструкций.

Пенополиуретан

Пенополиуретан

, с другой стороны, значительно отличается и более полезен в композитных конструкциях. Эти пенопласты производятся большими блоками либо в процессе непрерывной экструзии, либо в периодическом процессе.Затем блоки разрезаются на листы или другие формы. Иногда они также индивидуально формуются в отдельные детали.

Пенополимеры изоцианата

, хотя и не так сильно сшиты, как полиизоциануратные материалы, предлагают пользователям множество рентабельных преимуществ. Плотность пены колеблется от примерно 2 фунтов на кубический фут до 50 фунтов на кубический фут. В отличие от термопластичных пен (ПВХ, SAN), удельная стоимость пенополиуретана увеличивается более линейно с увеличением плотности; е.г., пенополиуретан плотностью 20 фунтов на кубический фут будет примерно вдвое дороже, чем пенополиуретан весом 10 фунтов.

Могут быть значительные различия в прочности пены при одинаковой плотности, в зависимости от используемого процесса производства пены. Это происходит из-за различий в химическом составе, необходимом для изготовления пен с помощью различных методов производства, и температуры отверждения пены в процессе производства.

Кроме того, если проблема воспламеняется, полезно знать, какой вид вспенивающего агента используется для образования ячеек в пене.Многие производители используют углекислый газ (побочный продукт химической реакции образования пены) для образования ячеек в своих пенах. Другие производители перешли с пенообразователей на основе хлорфторуглеродов (ГХФУ, ГФУ) на пентан в процессах производства пенопласта с низкой плотностью, что может отрицательно сказаться на огнестойкости.

Пенополиуретан

можно сделать значительно более жестким и менее хрупким, чем пенополиизоцианурат, в основном за счет некоторого модуля упругости и высокотемпературных прочностных свойств.Тем не менее, эти пены могут быть полезны (в зависимости от состава) до температур до 275 градусов по Фаренгейту, сохраняя при этом значительную часть своей прочности и ударной вязкости. Это позволяет также использовать их в панельных приложениях вместе с пре-прегами для высокотемпературного отверждения, отвержденными в печах или автоклавах.

Типичные области применения включают использование в качестве закрытия края сотовых панелей салона самолетов, конструктивных форм (сердечников транца, сердечника переборки, стрингеров, опор двигателя и т. Д.) В судостроении из стеклопластика, ограничителей ударов и противоударных подушек, сердечников RTM , шаблоны и заглушки, основной материал для спортивного инвентаря и композитная оснастка.

Полиизоцианурат / пенополиуретан

Существуют производители пенополиизоцианурат / пенополиуретан, представляющие собой смесь двух типов пенопласта, пытающиеся получить лучшее из обоих миров. Эти пены предлагают некоторые улучшения показателей прочности (по сравнению с пенополиуретаном) и снижение хрупкости (по сравнению с пенополиизоциануратами) за счет снижения термостойкости.

Тем не менее, результат этой комбинации является компромиссом и может не обеспечивать лучшие свойства обоих полимеров в некоторых областях применения.Эти пены ограничены плотностью 2-8 фунтов на кубический фут.

Предоставлено Тедом Хиле, General Plastics Mfg. Co.

Home


Поделиться статьей

Твиттер

Facebook

LinkedIn

Электронное письмо


Перейти к ПВХ пене

Температурный диапазон полиуретана

Один из многих распространенных вопросов, которые мы часто получаем от дизайнеров продукции, — «Какой температурный диапазон может выдерживать полиуретан?».В зависимости от химического состава термореактивные полиуретаны обычно могут выдерживать широкий диапазон температур, в отличие от термопластов и резины. От арктических тундр до засушливых жарких пустынь — этот настраиваемый материал часто может сохранять свою первоначальную форму и физические свойства даже в самых суровых условиях. Однако есть несколько условий, которые проектировщики должны учитывать при проектировании с использованием термореактивного полиуретана. В этом посте мы обсудим важность диапазона температур в вашем дизайне и то, как он может потенциально повлиять на производительность вашего продукта.

Диапазон температур

Стандартные термореактивные полиуретаны обычно могут выдерживать температуры от -80 ° F до 200 ° F. Однако некоторые химические составы полиуретана могут иметь более высокую устойчивость к температуре, достигающую 300 ° F. За пределами этих температур термореактивные полиуретаны со временем будут ослабевать или разрушаться.

Рабочие температуры

Рабочие температуры обычно относятся к диапазону температур, который материал может выдерживать, успешно выполняя свою роль в работе.Другими словами, речь идет не только о том, чтобы выжить при такой температуре, но и о выполнении задачи при этой температуре. Таким образом, рабочие температуры будут определяться окружающей средой приложения, а также продолжительностью пребывания в этой среде. При выборе материала очень важно проверить физические свойства, которые не будут нарушены в ожидаемых условиях окружающей среды во время эксплуатации.

К счастью, термореактивные полиуретаны бывают разных форм и форм.В зависимости от химического состава основы материала разработчик часто может иметь возможность указать широкий диапазон рабочих температур. Например, полиуретаны на основе TDI обычно имеют более высокие диапазоны рабочих температур, чем полиуретаны на основе MDI. Возьмем, к примеру, Durethane XL. Этот мощный материал был разработан с поликарбонатной основой для работы в самых суровых условиях.

Высокие температуры

Когда термореактивные полиуретаны подвергаются воздействию температур, превышающих допустимый диапазон, в течение длительных периодов времени, это часто может привести к следующим условиям:

  • Ослабленные физические свойства
  • Материал может вернуться назад, стать липким
  • Материал может гореть в зависимости от температуры и воздействия пламени
Низкие температуры

Применения с длительными рабочими температурами ниже -0 ° F могут привести к усилению уретана, изменяя физические свойства материала.Температура ниже -80 ° F сделает материал хрупким, что увеличит вероятность разрыва и / или разрыва.

Заключение

Термореактивные полиуретаны могут быть изготовлены по индивидуальному заказу для самых тяжелых условий эксплуатации. Из практически бесконечного диапазона физических свойств, включая двойной твердомер, проводимость, огнестойкость и / или стойкость к истиранию — мы можем сформулировать все это по индивидуальному заказу! Чтобы узнать больше о наших высокоэффективных материалах для повышения производительности, загрузите нашу спецификацию материалов здесь или щелкните баннер ниже:

Типы пенополиуретана — чем они отличаются?

Пенополиуретан, несомненно, является прекрасным изоляционным и герметизирующим материалом.На рынке существует множество видов этого продукта, поэтому стоит узнать больше об их свойствах. Узнайте, чем разные виды пенополиуретана отличаются друг от друга и каково их применение.

Пенополиуретаны и их свойства

Полиуретан в основном состоит из двух сырьевых материалов — изоцианата и полиола, которые получают из сырой нефти.После смешивания этих двух жидких компонентов системы, готовых к переработке, и различных вспомогательных материалов, таких как катализаторы, пенообразователи и стабилизаторы, начинается химическая реакция.

История полиуретана насчитывает несколько поколений. Сначала была технология производства жесткого (жесткого) пенопласта, затем гибкого пенопласта и, наконец, полужесткого пенопласта.

Какими свойствами обладает пена PUR? Прежде всего, он демонстрирует хорошие тепловые параметры — он устойчив к широкому диапазону температур (от –200 ° C до + 135 ° C).Средний коэффициент теплопроводности пенополиуретана составляет 0,026 Вт / м2, а наиболее благоприятная кажущаяся плотность после отверждения жесткого пенопласта обычно составляет 35-50 кг / м³.

Самым большим преимуществом пенополиуретана являются его прекрасные теплоизоляционные свойства. Пенополиуретан также устойчив к относительно высоким нагрузкам, а также к грибкам и плесени. Таким образом, это, несомненно, идеальный материал для любых строительных и ремонтных работ, таких как термо- и звукоизоляция, а в случае гибкого пенополиуретана — для монтажа и герметизации.

Пенополиуретан

обеспечивает отличную адгезию как к вертикальным, так и к горизонтальным поверхностям, имеет пористую структуру. Внутри пористых материалов имеются полые полости. Пористость — это свойство, которое говорит нам об объеме и количестве пор определенного диаметра. Пенополиуретан также отличается коротким временем обработки и после отверждения сохраняет свою химическую нейтральность.

Из недостатков материала часто упоминают его относительную горючесть и низкую стойкость к УФ-излучению.

Пены с открытыми и закрытыми ячейками

Пенополиуретан делится на два основных типа — с открытыми порами и с закрытыми порами.Первый предназначен для использования внутри помещений, в частности, для изоляции стен и крыш, а также для повышения акустического комфорта помещения, поскольку пенополиуретан, помимо теплоизоляционных свойств, имеет очень высокий коэффициент шумоподавления. Пенопласт с открытыми порами является паропроницаемым, поэтому можно сказать, что покрытая им поверхность «дышит». Распыляется изнутри прямо на крышу, легко наносится на мембрану или доску.

По техническим параметрам — пенопласт с открытыми ячейками имеет плотность 7–14 кг / м 3 , а коэффициент теплопроводности от 0.От 034 до 0,039 Вт / (м * К). Среди видов пенополиуретана с открытыми порами есть материалы с разной огнестойкостью. Лучшие из них имеют рейтинг E.

Другая группа — пенополиуретаны с закрытыми порами — благодаря высокой водостойкости, повышенной жесткости и прочности используются на открытом воздухе и в помещениях с повышенной влажностью.

Его структура содержит более 90% закрытых ячеек, а его плотность колеблется от 30 до 60 кг / м 3 . Коэффициент теплопроводности пенополиуретана с закрытыми порами составляет от 0,02 до 0,024 Вт / (м * К).

Виды пенопласта с закрытыми порами различаются по параметрам в зависимости от области применения. С одной стороны, он идеально подходит для изоляции фундаментных стен, потолочных конструкций, крыш и полов. С другой стороны, его можно использовать в промышленных и сельскохозяйственных зданиях, например, для изоляции производственных полов, складов, холодильных складов или животноводческих помещений.

Одно- и двухкомпонентные пены

Эти два типа отличаются тем, что для отверждения первым требуется влажность воздуха и строительных материалов. Последний подвергается отверждению в результате химической реакции между двумя его компонентами.

Однокомпонентная пена применяется в помещениях с неограниченным потоком воздуха и на открытом воздухе. Причина проста. Чем выше влажность (более 35%) и температура воздуха, тем быстрее затвердевает пена. В пределах ок. За 25 минут пена увеличивается в объеме примерно на 35%, поэтому полости необходимо заполнить примерно на 50% или 60%.

Двухкомпонентная фасонная пена подвергается химическому отверждению без доступа влаги. Поэтому его можно использовать в труднодоступных местах, сухих и требующих пены отличного качества.Этот вид пенопласта также подходит для фиксированного соединения деревянных конструкций. В пределах ок. За 25 минут двухкомпонентная пена увеличивается в объеме примерно на 30%, поэтому не следует заполнять полости полностью, а только на 80%.

Пена для пистолетных и шланговых распылителей

Пистолет-распылитель и стандартный жесткий пенополиуретан (распыление из шланга) являются обычно используемыми герметизирующими материалами.Здесь решающее значение имеет метод нанесения. Первый тип требует специального пистолета для пены, который обеспечивает точное нанесение. Шланговая пена, с другой стороны, получила свое название от специального шланга, через который пена распыляется. Этот вид пены используется чаще, поскольку он дешев и не требует специальных инструментов для нанесения.

Пена зимняя, летняя и круглогодичная

Пенополиуретан можно различать по диапазону наружных температур во время обработки.Как видно из названия, зимняя пена используется при низких температурах, а летняя — при температуре не менее 10 ° C. Круглогодичная пена отличается лучшей температурной переносимостью. Однако помните, что последнего следует избегать как при очень низких, так и при очень высоких температурах.

Явления возгорания жестких пенополиуретанов

3.1. Характеристика пены

СЭМ-микрофотографии поперечных сечений каждой пены были сделаны при увеличении 100 и показаны на рис. Все материалы имеют однородную ячеистую структуру, а также в основном закрытые ячейки. Это типично для жестких пенополиуретанов и желательно для большинства целей, поскольку стенки с закрытыми ячейками вызывают не только низкое водопоглощение и низкую проницаемость для влаги, но также задерживают вспенивающий агент, который отвечает за их низкую теплопроводность. RPUF с плотностью около 30 кг / м 2 часто имеет содержание закрытых ячеек 85–95% [1].Исследуемые пены показывают довольно однородные размеры ячеек, которые увеличиваются с уменьшением плотности пены. Кроме того, разные пены имеют сравнимую морфологию клеток при одинаковых плотностях, что делает их сопоставимыми по характеристикам горения.

СЭМ-микрофотографии клеточной структуры всех исследуемых материалов.

приводит результаты по теплопроводности и прочности на сжатие. Теплопроводность пен с закрытыми порами зависит от плотности, размера ячеек и газа внутри ячеек пены и не является линейной зависимостью.Фактически, теплопроводность определяется теплопроводностью твердого тела и газа, а также радиационным теплопереносом между стенками ячеек [37]. Приведенные данные показывают, что минимальная теплопроводность обычно находится в диапазоне 50–70 кг / м 3 . Это согласуется с литературой [37] и связано с увеличением твердой проводимости, уменьшением радиационного вклада и небольшим уменьшением газовой проводимости с увеличением плотности. В литературе сообщалось, что ППУФ, продуваемый пентаном, имеет более низкую теплопроводность, чем ППУФ, продуваемый водой [38].Это подтвердили измерения. Обычные RPUF, используемые для строительства, имеют плотность около 30 кг / м 3 , а их теплопроводность может составлять всего 24 мВт / м · К [2]. Поскольку состав пен, исследованных в этом исследовании, не был оптимизирован в отношении их теплопроводности, λ увеличивается по сравнению с коммерческими системами. Из-за повышенной стабильности пенопластов с более высокой плотностью прочность на сжатие увеличивается с увеличением плотности [1]. В то время как PUR-P и PUR-H показали одинаковые значения прочности на сжатие при одинаковых плотностях, PIR-30-P имел значительно увеличенную прочность на сжатие — 348 кПа, по сравнению с 195 кПа для PUR-30-P и 170 кПа для PUR-. 30-Н.Однако прочность на сжатие при плотности 100 кг / м 3 была аналогичной для пен PUR и PIR.

Таблица 2

Результаты определения характеристик пены.

ПУР-100-Н

355 ± 4

Материал λ при 10 ° C (мВт / м · К) Прочность на сжатие (кПа)
PUR-30-P 29,6 ± 0,2 9016 ± 9 9016 ± 9
ПУР-50-П 25,7 ± 0,2 338 ± 4
ПУР-30-Н 29.8 ± 0,2 170 ± 8
PUR-50-H 27,7 ± 0,2 343 ± 14
PUR-70-H 28,5 ± 0,2 424 ± 10
26,6 ± 0,2 1025 ± 23
ПИР-30-П 28,6 ± 0,2 348 ± 2
ПИР-50-П 28,216 ± 0,2
ПИР-70-П 25,1 ± 0,2 369 ± 11
ПИР-100-П 29.8 ± 0,2 1091 ± 28

3.2. Анализ пиролиза и предельный кислородный индекс

В TG все материалы показали свою основную стадию разложения между 250 и 500 ° C. Кривые ТГ и скорости потери массы (MLR) пен PUR-P и PUR-H показаны на рис. Поскольку все пены измерялись как порошковые, плотность исходных материалов не оказывала значительного влияния на процесс пиролиза.

Результаты ТГ пен PUR-P, PUR-H и PIR-P.

Результаты ТГ показаны в.PUR-P и PUR-H показали аналогичное поведение при разложении с широким пиком между 250 и 500 ° C и четырьмя меньшими локальными максимумами. Для сравнения рассматривался только первый локальный пик. Температуры первого пика колебались от 290 до 296 ° C. Все пены имели остаток приблизительно 20 мас.%, А T 95% находился в диапазоне от 274 до 281 ° C; температура пиролиза (T макс ) составляла от 290 до 296 ° C.

Таблица 3

Результаты измерений TG и LOI.

Материал T 95% (° C) T max (° C) Остаток (мас.%) Сред.Остаток (мас.%) LOI (об.%)
PUR-30-P 274 290 19,9 19,8 ± 0,1 19,5 ± 0,3 50165 PUR154 П 275 291 19,7 20,4 ± 0,2
PUR-30-H 277 296 21,5 20,4 ± 1,1 20,1 -H 281 292 21.5 20,5 ± 0,2
PUR-70-H 276 291 19,3 21,0 ± 0,2
PUR-100-H 275 ± 0,1
ПИР-30-П 279 338 26,7 27,4 ± 0,7 21,5 ± 0,2
ПИР-50-П 279

906

22,4 ± 0,2
ПИР-70-П 289 340 28.0 22,9 ± 0,2
PIR-100-P 293 339 27,1 23,1 ± 0,1

Пены PIR-P показали поведение разложения с одной большой стадией разложения около 340 ° C . Повышенная термостойкость пен PIR обусловлена ​​структурой изоциануратного кольца [39]. Разложение PIR-P начинается в диапазоне от 279 до 293 ° C и немного увеличивается с увеличением плотности. PIR-P обычно дает большее количество остатка: 27.В среднем 4 мас.%.

содержит результаты измерений предельного кислородного индекса (LOI) для всех пен, которые были протестированы. Внутри каждой группы материалов LOI увеличивался с увеличением плотности, хотя эффект невелик. Действительно, влияние плотности ограничено от 1,2 до 1,6 об.% И было связано с повышенной тепловой инерцией и лучшим выходом полукокса пен с более высокой плотностью. LOI PUR-30-H немного увеличился, 20,1 об.% По сравнению с 19,5 об.% Для PUR-30-P, что, вероятно, является следствием использования негорючего вспенивающего агента.Из-за более высокой термостойкости пен PIR-P LOI увеличился примерно на 2 об.%, В диапазоне от 21,5% до 23,1%.

3.3. Поведение при пожаре

3.3.1. Время до воспламенения

Из-за ячеистой структуры пен и низкой тепловой инерции, которую это влечет за собой [40,41], tig всех материалов, измеренных с помощью конического калориметра, составлял 4 с или меньше (). Небольшое увеличение tig было измерено для увеличения плотности, которое было незначительным, но было связано с повышенной тепловой инерцией пен с более высокой плотностью.В общем, tig для термически толстых материалов можно описать как [4,42]:

tig = π4λρc (Tig − T0) 2q˙ext ″ 2 − CHF,

(2)

где Tig — температура воспламенения пены, T0 — температура окружающей среды, q˙ext ″ — внешний тепловой поток, а CHF — критический тепловой поток, необходимый для воспламенения RPUF в конусном калориметре. Измеренная теплоемкость, а также расчетное и измеренное значение tig для всех материалов показано в. Для расчета tig использовались следующие параметры: Tig = 305 ° C [40]; Т0 = 20 ° С; q˙ext ″ = 50 кВт / м 2 ; CHF = 23 кВт / м 2 [4].

Таблица 4

Удельная теплоемкость, а также расчетная, измеренная и скорректированная tig для пен с плотностью 50 кг / м 3 .

± 1

Материал тигров Измерено c (Дж / кг К) тигров Рассчитано тигров Рассчитано
PUR-50165 3 1304 ± 52 0,14 0,90
PUR-50-H 2 ± 1 1315 ± 47 0.15 1,30
ПИР-50-П 3 ± 1 1313 ± 40 0,16 0,79

Расчетные значения tig занижают измеренные на порядок. Причина этого в том, что формула для оценки tig имеет некоторые приближения, например, она предполагает, что все количество падающего излучения поглощается в поверхностном слое. Однако как полупрозрачная среда пена демонстрирует глубокое поглощение инфракрасного излучения [30].Поскольку первые стенки ячеек в верхнем слое имеют только часть полного поглощения, глубокое поглощение может быть основным фактором для определения tig. [43] Чтобы проверить это, был проведен простой эксперимент, как описано в [31,32]. Измеренные значения интенсивности, толщины образцов и рассчитанные коэффициенты поглощения отображаются в.

Таблица 5

Измеренные интенсивности (I / I 0 ), толщина образца (S), коэффициенты поглощения (a) и поглощение зоны пиролиза (αpy) для каждой пены плотностью 50 кг / м 3 .

Материал I / I 0 (%) S (мкм) a (мм −1 ) αpy
PUR-50-P 63 ± 4 91 ± 13 5067 0,40
PUR-50-H 58 ± 1 104 ± 9 0,34
ПИР-50-П 69 ± 2 76 ± 11 4900 0.44

Измерения падающего излучения на измерителе теплового потока после прохождения через образец сжатого пенопласта показали, что менее 50% излучения поглощается в поверхностном слое от 76 мкм для ПИР-50-П до 104 мкм для PUR-50-H.

показывает СЭМ-микрофотографию средней стойки и клеточных стенок PUR-50-P, PUR-50-H и PIR50-P, показывающую, что размер стойки составляет приблизительно 10 мкм, а толщина отдельной клеточной стенки меньше. чем 1 мкм.Поэтому глубокая абсорбция является решающим фактором при определении tig для всех протестированных пен.

СЭМ-микрофотография поперечного сечения стоек и стенок ячеек для PUR-50-P, PUR-50-H и PIR-50-P, а также соответствующих зон пиролиза.

Для получения более надежных результатов оценки tig был определен эффективный тепловой поток (q˙eff ″) для расчета tig для RPUF. Следовательно, коэффициент поглощения, который описывает долю излучения, поглощаемую на заданном расстоянии, определяется как:

был рассчитан для каждой пены на толщину зоны пиролиза, способствующей воспламенению [30].Значение 0,10 мм рассматривалось для PUR-50-P, 0,08 мм для PUR-50-H и 0,12 мм для PIR-50-P. Зона пиролиза, способствующая воспламенению, быстро изменяется в начале испытания коническим калориметром. Если на первом этапе стенки и стойки ячеек поглощают излучение, то через короткое время поглощающий слой состоит из жидких продуктов пиролиза. Поскольку этот слой неоднороден по поверхности образца, толщины для расчета коэффициента поглощения были грубо оценены путем анализа изображений, полученных с помощью изображений поперечных сечений закаленной пены, как показано на рис.Поглощение зоны пиролиза (αpy) для каждой пены указано в. Эффективный тепловой поток был определен как:

q˙eff ″ = αpy · q˙ext ″.

(4)

Значения tig, оцененные путем приложения эффективного теплового потока, перечислены в. Соответствующие результаты все еще недооценивают реальный tig и носят скорее качественный характер, чем представляют собой количественную оценку. Было показано, что исследованные пены практически мгновенно воспламеняются при воздействии теплового потока 50 кВт / м 2 .Однако результаты того же порядка величины и представляют собой хорошее приближение к измеренному tig.

3.3.2. Burning

Результаты измерений tig, PHRR, tPHRR, THR, остатка и TML / THR показаны на коническом калориметре. Теплопроводность пенопласта в основном была низкой, поэтому ячеистые полимеры очень быстро реагируют на тепловой поток. Поэтому поверхность всех испытанных образцов быстро нагревалась после воздействия внешнего теплового потока конусного калориметра.Это привело к быстрой поставке продуктов пиролиза и, следовательно, к быстрому развитию устойчивого горения. Все образцы подверглись отчетливому обугливанию, ни один из них не продемонстрировал структурного разрушения и не образовал очага пожара жидких продуктов пиролиза.

Таблица 6

Результаты испытаний конического калориметра.

ПУР-50-Н ПИР-30-П ПИР-100-П
Образец tig (s) PHRR (кВт / м 2 ) tPHRR (s) THR (МДж / м 2 ) TIG (мас.%) / THR (МДж / м 2 г)
PUR-30-P 2 ± 1 368 ± 3 15.0 ± 1,0 27 ± 2 15,5 ± 0,4 2,0 ± 0,1
ПУР-50-П 3 ± 1 405 ± 7 16,5 ± 1,5 40 ± 2 16,4 ± 0,0 1,9 ± 0,1
PUR-30-H 2 ± 1 366 ± 14 16,5 ± 4,5 27 ± 2 18,5 ± 3,7 2,0 ± 0,1
2 ± 1 395 ± 1 16.5 ± 1,5 41 ± 2 15,7 ± 1,0 1,9 ± 0,1
PUR-70-H 3 ± 1 417 ± 1 16,5 ± 1,5 57 ± 1 16,9 ± 0,1 1,9 ± 0,1
PUR-100-H 4 ± 1 428 ± 13 19,5 ± 1,5 87 ± 1 16,5 ± 0,0 1,9 ± 0,1
2 ± 1 234 ± 6 13.5 ± 1,5 28 ± 1 16,7 ± 0,9 2,1 ± 0,1
ПИР-50-П 3 ± 1 226 ± 1 16,5 ± 1,5 47 ± 1 22,8 ± 1,1 2,1 ± 0,1
ПИР-70-П 3 ± 1 226 ± 9 15,0 ± 1,0 55 ± 4 23,5 ± 2,2 2,1 ± 0,1
4 ± 1 219 ± 5 18.0 ± 1,0 81 ± 3 24,5 ± 1,8 2,0 ± 0,1

Кривые HRR всех протестированных материалов представлены в. Графики показывают типичное горение материалов, образующих остатки [36]. Возгорание немедленно сопровождалось PHRR и образованием углеродсодержащего защитного слоя. Затем, на втором этапе, происходило платообразное поведение HRR с менее интенсивным горением. Длина этого плато зависела от плотности материалов и, следовательно, от количества горючего материала.Период горения удлинялся с увеличением массы образца, но имел одинаковую интенсивность в каждой группе материалов. Для некоторых образцов можно было идентифицировать незначительные пики в конце плато, которые были вызваны растрескиванием поверхности остатка.

Кривые HRR для (а) вспененного пентаном полиуретана, (б) вспененного полиуретана (PUR) и (в) вспененного полиуретана, вспененного пентаном.

Ранее сообщалось о влиянии плотности на характеристики горения как для гибких, так и для жестких пен [33,44]. Представленный массив кривых также известен для обугливания образцов разной толщины.Увеличение толщины образца при сохранении постоянного химического состава материалов приводит к длительной фазе устойчивого горения. По сравнению с характеристиками горения настоящих пен, повышенная плотность образца вызывает аналогичный эффект. При сохранении химического состава пены постоянным количество горючего материала увеличивается [36]. Аналогичное горение наблюдалось для не обугливающихся полимеров, таких как полиметилметакрилат (ПММА). После воспламенения ПММА демонстрирует фазу устойчивого горения с почти постоянной HRR, продолжительность которой определяется толщиной образца и, следовательно, количеством горючего материала [45].Явление повышенного устойчивого горения для пен основано на том же эффекте, но вместо увеличения толщины образца для большего количества горючего материала плотность является изменяемым параметром. Хотя для различных толщин образца фронт пиролиза, потребляющий образец, является постоянным, но время горения увеличивается, поскольку фронт должен проходить большее расстояние, для образцов с различной плотностью фронт пиролиза должен проходить такое же расстояние, но его скорость уменьшается с увеличением плотности.Эксперимент по изменению свойств, включая толщину образца, показал такое же результирующее влияние на скорость потери массы горящих полимеров. Увеличение толщины образца не повлияло на среднюю или максимальную скорость потери массы до тех пор, пока толщина образца была достаточно большой для достаточного глубокого поглощения [42].

Специальные пенообразователи действуют как газообразный антипирен в пенопластах с закрытыми порами. Трихлорфторметан (CFC-11) действует как ингибитор пламени, обладает способностью гасить радикалы и, как известно, улучшает огнестойкость пен [41].Из-за его озоноразрушающей способности он был запрещен в 90-х годах; следовательно, воспламеняемость RPUF стала серьезной проблемой. Воспламеняемость вспенивающих агентов все еще является предметом исследований [46], поскольку вспенивающие агенты, используемые в настоящее время, могут быть негорючими (например, HFC 365/227 93/7 или вода) или легковоспламеняющимися (например, смесь изомеров пентана). Тем не менее, PUR-P и PUR-H работали одинаково при плотностях 30 и 50 кг / м 3 соответственно. Результаты исследованных конических калориметров, полученные для обоих материалов, не показали существенных различий.Несмотря на то, что содержимое закрытых ячеек является либо легковоспламеняющимся (изо- и циклопентан для вспененных вспененных материалов из пентана), либо инертным (CO 2 для вспененных вспененных материалов), PHRR, средняя HRR и пожарная нагрузка различаются для каждого из них. другие лишь незначительно. Поскольку пентан добавляет не более 3-5 мас.% К общей массе и, таким образом, почти не добавляет топлива или повышенного EHC, огнестойкость RPUF определяется в основном твердым полимером, а не газовой фазой [8]. Исследования вспененных пен из пентана и HFC 365mfc показали, что они принципиально не отличаются от вспененных вспененных материалов с CFC-11 или HCFC 141b по своим огнестойкости [47,48].

PHRR PUR-H увеличился с 366 кВт / м 2 для PUR-30-H на 17% до 428 кВт / м 2 для PUR-100-H, вероятно, из-за большего количества горючего материала в поверхностном слое, что привело к большему количеству продуктов пиролиза и привело к более высокому PHRR для образцов с более высокой плотностью. Чем выше количество продукта пиролиза в верхнем слое, тем больше тепла может выделяться, что приводит к увеличению PHRR для материалов с более высокой плотностью. Из-за большей пожарной нагрузки материалов с повышенной массой THR также выросла с плотностью пены.Выход полукокса незначительно изменился с плотностью в группе всех испытанных пен PUR-H, в диапазоне от 15,7 до 18,5 мас.%. Это соответствует остаточной массе, полученной от TG, даже несмотря на то, что остатки от TG были немного выше по сравнению с результатами конусного калориметра. Вероятно, это происходит из-за некоторого окислительного разложения, добавляемого к пиролитическому разложению в условиях принудительного пламени.

PHRR образцов PIR-P немного снизился с увеличением плотности. Для этих материалов эффект более отчетливого обугливания преобладал над эффектом большего количества горючего материала на поверхности для материалов с более высокой плотностью, как это наблюдалось для образцов PUR-H.PHRR и средний HRR значительно ниже по сравнению со всеми протестированными образцами PUR, но все они показали длительное время до исчезновения пламени. Лучшая общая огнестойкость пен PIR обусловлена ​​структурой изоцианатного кольца. Ранее сообщалось о положительном влиянии на термическую стабильность, а также на поведение при пожаре [41,49,50]. Однако было обнаружено, что улучшенная термическая стабильность не обязательно приводит к лучшим противопожарным характеристикам [51]. Это улучшение, скорее всего, является результатом лучшего обугливания и, следовательно, лучшего защитного слоя, который исследуется и подробно описывается далее в этой статье.С увеличением плотности и, следовательно, большего веса образца THR увеличивается. По сравнению с пенами PUR-P и PUR-H пожарная нагрузка была очень похожей. Несмотря на то, что HRR был намного ниже, время до погашения увеличивалось. Плотность остатка увеличилась с 16,7 мас.% Для PIR-30-P до 24,5 мас.% Для PIR-100-P, что указывает на то, что превосходные характеристики обугливания также приводят к увеличению выхода полукокса с увеличением плотности. Это основано на том факте, что большее количество горючего материала в верхнем слое может образовывать более плотный слой угля, более эффективно защищающий нижележащий материал.Напротив, остаток, полученный от TG, был даже выше и аналогичен для всех пен PIR-P. В этом случае результаты конического калориметра отличаются от результатов ТГ, поскольку макроскопические эффекты, такие как образование защитного слоя, плохо распознаются ТГ. EHC не претерпел значительных изменений ни для одной из пен.

Остатки экспериментов конусного калориметра отображаются в. Существуют фундаментальные различия в качестве остатков на макроскопическом уровне, даже несмотря на то, что исследование угля с помощью СЭМ показало, что поверхность каждого остатка была замкнутой и компактной.Защитные слои, образовавшиеся во время горения образца, были одинакового качества в каждой группе материалов, независимо от их плотности. В то время как PUR-P и PUR-H образовывали остатки с видимыми отверстиями, остатки PIR-P имели замкнутую и компактную поверхность. показывает поверхность образцов с плотностью 50 кг / м 3 , которые были закалены на 50 мас.% TML. Поскольку пены PUR-P и PUR-H демонстрируют незначительный выход полукокса, а полукокс, образующийся во время горения, кажется, имеет низкую вязкость, так как он пузырится во время горения, их остатки имеют открытую поверхность и поэтому не покрывают весь образец.Обугливание пен PUR-P и PUR-H было хрупким и хрупким, обеспечивая лишь незначительную защиту, поскольку их поверхность не была закрытой. Образцы PIR-P показали остатки закрытой поверхности, покрывающие весь образец, из-за их повышенного выхода полукокса. Сразу после зажигания образовался замкнутый и плотный защитный слой. После погашения пламени остаток был стабильным и плотным. Это хорошо коррелирует с наблюдениями PHRR и HRR во время фазы устойчивого горения, поскольку PHRR и средний HRR были значительно ниже для пен PIR-P.

Остатки в коническом калориметре пен PUR-P, PUR-H и PIR-P.

Макрофотография поверхностей остатков ПУР-50-П, ПУР-50-Н и ПИР-50-П.

3.4. Развитие температуры внутри горящих образцов

Во время испытания конусным калориметром развитие температуры внутри горящих образцов контролировалось на глубине 10, 20 и 30 мм. Кривая HRR и развитие температуры внутри образцов были построены во времени и отображены для PUR-50-P, PUR-50-H и PIR-50-P.Графики показывают отличные теплоизоляционные свойства пен. Несмотря на то, что PHRR верхнего горящего слоя для обоих материалов был достигнут уже через 16,5 с, температура, измеренная на глубине 10 мм, оставалась низкой. Как только фронт пиролиза приближался к термопаре, происходило резкое повышение температуры. К тому времени, когда T 95% был достигнут на глубине 10 мм, защитный слой на поверхности уже сформировался, и HRR начал падать до устойчивого горения HRR.После прохождения термопары пена сгорела в огне, так что термопара была частично покрыта остатками и частично обнажена. Таким образом, он измерял температуру пламени, которая является причиной ошибочного сигнала температуры выше 500 ° C. Падение температуры, отображаемое буквой b для сигнала 30 мм, было вызвано растрескиванием остатка. Нечто подобное произошло в c.

Кривая скорости тепловыделения и развитие температуры внутри горящего образца (а) ПУР-50-П (б) ПУР-50-Н и (в) ПИР-50-П.

Сравнивая сигналы температуры с сигналами PIR-50-P, время достижения T 95% на каждой глубине измерения значительно увеличилось для PIR-50-P. Это вызвано более низким значением MLR в условиях испытаний коническим калориметром и лучшими огнестойкими характеристиками этого материала. Для пен PIR эти наблюдения хорошо коррелируют с уменьшенным PHRR, уменьшенным средним HRR и их повышенным выходом полукокса и, следовательно, улучшенным защитным слоем по сравнению с пенами PUR-P и PUR-H. Кроме того, приближение к первой термопаре на глубину 10 мм для фронта пиролиза по-прежнему занимает больше времени, чем для пен PUR.Это также хорошо коррелирует с результатами конического калориметра, такими как PHRR, средний HRR и остаток. Графики температурного сигнала в c более гладкие, так как термопара была полностью покрыта углем.

показывает изменение температуры внутри горящих образцов для пен PUR-H и PIR-P для самой низкой и самой высокой плотности соответственно. Наклоны графиков исследуются путем определения максимума первой производной, которая определяется здесь как максимальная скорость нагрева (MHR).На графиках видно, что наклон температурных кривых тем круче, чем меньше плотность. дает понять, что начало повышения температуры на глубине 10 мм существенно задерживается за счет увеличения плотности. Хотя tPHRR, полученный при испытании конусным калориметром, почти не зависит от плотности, скорость фронта пиролиза составляет. Это доказывает, что образование защитного углеродистого слоя зависит только от количества горючего материала, которое расходуется огнем. Увеличение плотности пены приводит к более раннему образованию полукокса.MHR, показанные в, были зарегистрированы в течение первых 100 с для PIR-30-P, в то время как фронт пиролиза прошел последнюю термопару только через более 300 с для PIR-100-P. Сигналы термопар для PIR-100-P на глубине 20 мм и 30 мм показали очевидное повышение температуры от температуры окружающей среды до примерно 100 ° C, что было вызвано теплопроводностью во время горения через пену. После этого произошел небольшой перегиб сигнала, а затем произошло более резкое повышение температуры, что можно объяснить приближением фронта пиролиза.Падение температуры, отображаемое для 30-миллиметрового сигнала PUR-30-H, было вызвано растрескиванием остатка.

Изменение температуры внутри (а) пенопласта PUR-H и (b) пенопласта PIR-P при плотностях 30 и 100 кг / м 3 .

Таблица 7

Максимальные скорости нагрева на глубине 10, 20 и 30 мм для всех протестированных материалов.

Образец Глубина 10 мм Глубина 20 мм Глубина 30 мм
MHR (° C / с) tMHR (s) MHR (° C / s) tMHR (s) MHR (° C / s) tMHR (s)
ПУР-30-П 97 14 62 24 52 44
ПУР-50-П 84 21 45 73
PUR-30-H 89 15 76 26 55 42
PUR-50-H 75 21 50 75 21 50 39 67
PUR-70-H 38 44 31 75 25 112
PUR-100-H 245 71 71 127 16 195
ПИР-30-П 43 20 11 50 10 90
ПИР-50-П 22 44 11 98 10 172 П 14 63 8 141 9 239
ПИР-100-П 8 107 7 7 3616 7 366 9016

содержит максимумы скоростей нагрева (MHR), выведенные из температурных кривых, а также время, в которое произошло MHR (tMHR) для каждой глубины измерения (10, 20 и 30 мм).В общем, в каждой группе материалов MHR показывает уменьшение с увеличением плотности и с увеличением глубины измерения. Скорее всего, это эффект уменьшения теплового потока конусных калориметров по мере увеличения расстояния от термопары, но также и результат увеличения толщины нагара и, следовательно, лучшего защитного слоя. Более низкий MHR и более длинный tMHR указывают на лучший защитный слой с увеличением глубины измерения, но не обязательно на более низкую скорость фронта пиролиза, поскольку существует перекрывающийся эффект теплопроводности через образец.Следовательно, MHR уменьшилась на глубине 20 мм и 30 мм по сравнению с 10 мм.

Пены PUR-P и PUR-H показали самые высокие скорости нагрева в отношении плотности. MHR для пенопластов, вспениваемых пентаном, была немного выше на уровне 10 мм, что, вероятно, является результатом действия легковоспламеняющегося вспенивающего агента, хотя общие характеристики огня, определенные с помощью конического калориметра, не пострадали по сравнению с RPUF, полученным из вспененного водой. Однако по сравнению с пенополиуретаном значительная разница наблюдалась для PIR-P.MHR, измеренная на глубине 10 мм, снизилась с 89 ° C / с для PUR-30-H на 52% до 43 ° C / с для PIR-30. Это явление является следствием более высоких огнестойких характеристик пен PIR-P в условиях принудительного горения, о чем говорилось ранее. Пены PIR обычно демонстрировали самый низкий MHR и самый длинный tMHR.

В целом, измеренное повышение температуры замедляется с увеличением плотности и увеличением глубины измерения. Кроме того, максимальные скорости нагрева уменьшились, а время до максимальных скоростей нагрева увеличилось.Хотя это, вероятно, является эффектом теплопроводности через образец и не имеет значения для определения фактической скорости фронта пиролиза, это указывает на критическое изменение характеристик горения пены с увеличением плотности. Для пен с низкой плотностью сигнал температуры резко возрастал, как только фронт пиролиза приближался к термопаре. Напротив, для пен с высокой плотностью наблюдалось более умеренное повышение, включая незначительное повышение температуры внутри образца перед пиролизом, вызванное теплопроводностью через массу пены.Это означает сдвиг горения в сторону твердого неклеточного материала с увеличением плотности.

Информация о скорости фронта пиролиза может быть получена из изменения температуры, измеренной внутри горящих образцов. T 95% , полученный от TG, использовался для определения времени, в которое фронт пиролиза достиг глубины измерения температуры. Длительная фаза устойчивого горения в испытании конусным калориметром при постоянном размере образцов связана с уменьшением скорости фронта пиролиза.Чтобы исследовать это явление, скорость была рассчитана с учетом времен T 95% . Следовательно, скорость определялась на глубине образца от 10 до 20 мм и от 20 до 30 мм. Это было определено как метод 1. Интересно, что потеря массы, полученная при испытании конусным калориметром, указывает на линейное поведение на протяжении всего испытания до тех пор, пока не погаснет пламя. График нормализованного веса образца с течением времени показан для каждого тестируемого материала в. Данные измерений начинаются с tig и записывались до тех пор, пока не погасло пламя.Для каждого материала наблюдался излом кривой потери массы. Это знаменует переход от пламенного горения и пиролитического разложения к послесвечению углеродистого остатка. Нормализованные веса образцов подбирались, начиная от tig до момента затухания, и рассчитывалась результирующая скорость фронта пиролиза. Поэтому было сделано предположение, что уменьшение массы пропорционально уменьшению объема и что количество остатка, образовавшегося во время сгорания, было постоянным во времени. Это было определено как Метод 2.Результаты метода 1 и метода 2 были сопоставлены и нанесены на график по глубине образца. Это сравнение было выполнено для каждой пены с плотностью 50 кг / м 3 и показано на.

История нормализованного веса образца для (а) PUR-P, (b) PUR-H и (c) пен PIR-P.

Сравнение скорости фронта пиролиза, полученной с помощью термопары, и данных о потере массы для PUR-50-P, PUR-50-H и PIR-50-P.

И метод 1, и метод 2 выявили уменьшение скорости фронта пиролиза для всех пен.Как уже обсуждалось выше, это, вероятно, является следствием увеличения толщины слоев угля и уменьшения интенсивности излучения конического нагревателя с увеличением расстояния [34]. Кроме того, появление PHRR непосредственно после зажигания в самом начале измерения конусным калориметром свидетельствует о самой толстой зоне пиролиза или самой быстрой скорости фронта соответственно [35]. В то время как данные о потере массы конического калориметра указывают на постоянную скорость фронта пиролиза (), измерения с помощью термопары фактически доказывают, что скорость немного уменьшается с увеличением глубины измерения.Причиной того, что данные о потере массы остаются постоянными, может быть дополнительное тление остатка уже во время пламенного горения, как это было в предыдущем исследовании пен PIR и фенольных пен [52]. Тем не менее, эти два сигнала показывают хорошую корреляцию между Методом 1 и Методом 2 для PUR-50-P и PUR-50-H, оба из которых сгорают более неравномерно, чем пеноматериалы PIR. Фактически, была даже более сильная корреляция между результатами PIR-50-P, поскольку горение было более плавным.

Средние скорости фронтов пиролиза пен плотностью 50 кг / м 3 приведены в.Результаты были усреднены на глубине от 10 до 30 мм для обоих методов, чтобы охватить одну и ту же область измерения. Метод 2 дает снижение скорости на 13% для PUR-50-P и на 23% для PUR-50-H, соответственно. Напротив, скорость PIR-50-P увеличилась на 13% по сравнению с методом 1. Причиной этого, вероятно, являются ограничения обоих методов. Результаты метода 1 пострадали от неравномерно горящего образца, разлагающийся поверхностный слой которого не является идеальной плоскостью. Это приводит к тому, что фронт пиролиза достигает термопар в разное время.Скорость фронта пиролиза, полученная из потери массы в тесте конусного калориметра, подвержена системным эффектам рассеяния, поскольку масса образцов очень мала. Сравнение скорости исследуемых пен со скоростью насыпного полимера показывает, насколько быстро ячеистые материалы поглощаются огнем из-за их низкой плотности. Для ПММА, как негорючего полимера, проявляющего термически толстое горение, была измерена средняя скорость фронта пиролиза 0,025 мм / с (1,51 мм / мин) [53].Для эпоксидной смолы (почти не обугливающейся) и ее слоистого силикатного нанокомпозита, образующего защитный слой, были измерены значения 0,012–0,023 мм / с (0,7–1,4 мм / мин) и 0,008–0,012 (0,5–0,7 мм / мин). соответственно [54]. Скорость фронта пиролиза исследованных пен более чем в 10 раз превышала таковую для объемных полимеров.

Таблица 8

Средние скорости фронта пиролиза ПУР-50-П, ПУР-50-Н и ПИР-50-П.

Зона пиролиза

Макрофотографии закаленных образцов представлены на рис. Пиролиз прерывали закалкой в ​​жидком азоте для сохранения структуры образцов в точке потери массы 50% масс.Пены PUR-P и PUR-H демонстрируют полностью неповрежденную структуру пены под фронтом пиролиза и не показывают никакого обесцвечивания. Напротив, пена PIR-P показывает небольшую зону обесцвечивания, указывающую на термическое разложение под углем. Однако толщина обесцвеченной зоны существенно не меняется с плотностью.

Макрофотографии поперечных сечений закаленных образцов.

отображает SEM-изображения поперечных сечений образцов конического калориметра всех протестированных образцов.Несмотря на разницу плотностей, в каждой группе материалов было выявлено аналогичное поведение. Здесь следует различать пенопласты PUR и PIR. PUR-P и PUR-H показали определенный фронт пиролиза с четкой границей между неизменной структурой пены и обугленным остатком. Это можно интерпретировать как результат очень хороших теплоизоляционных свойств пены и скорости фронта пиролиза. Поскольку теплопроводность через образец очень низкая, а скорость потери массы высока, структура пены не претерпевала никаких морфологических изменений до тех пор, пока материал не подвергся пиролизу и не сгорел в огне.Морфология пены затем терялась, когда фронт пиролиза проходил через образец. Это согласуется с более ранним исследованием [55].

СЭМ-микрофотографии поперечных сечений закаленных образцов.

Исследование поперечных сечений пен ПИР-П показало различное поведение. Вместо четкого фронта пиролиза наблюдалась зона пиролиза. Предполагается, что естественный выход углерода пен PIR, который отличается от PUR, является причиной этого явления. Микрофотографии, полученные с помощью SEM, показывают, что морфология пены в некоторой степени сохраняется в остатке или что, по крайней мере, полукокс образует пеноподобную структуру.Таким образом, в условиях принудительного горения пены PIR-P дают более эффективный защитный слой, чем пены PUR, с точки зрения их теплоизоляционных свойств.

СЭМ микрофотографии PIR-70-P, структура пены (а) и остатков (б).

отображает неповрежденную структуру пенопласта PUR-50-P, PUR-50-H и PIR-50-P, а также структуру их остатков после закалки. Остаток был тонким и хрупким, имел закрытую поверхность, что давало слабую защиту нижележащему материалу.Хорошо видно, что часть остатков пенопласта ПИР-П полая, с своеобразной ячеистой структурой. В целом остатки, образованные пеной PIR, были более стабильными, плотными и густыми по сравнению с пенополиуретаном. Предполагается, что это явление является основной причиной превосходных огнестойких характеристик и заслуживает более подробного изучения и в более широком масштабе.

СЭМ-микрофотографии структуры пенопластов ПУР-50-П, ПУР-50-Н, ПИР-50-П и остатков.

Применение полиуретана

По данным U.С. Министерство энергетики. Природа химического состава позволяет адаптировать полиуретаны для решения сложных задач, придавать им необычные формы и улучшать качество промышленных и потребительских товаров.

Полиуретаны образуются при взаимодействии полиола (спирта с более чем двумя реактивными гидроксильными группами на молекулу) с диизоцианатом или полимерным изоцианатом в присутствии подходящих катализаторов и добавок. Поскольку для производства полиуретана можно использовать различные диизоцианаты и широкий спектр полиолов, можно производить широкий спектр материалов для удовлетворения потребностей конкретных областей применения.

  • Гибкий пенополиуретан

    Гибкий пенополиуретан используется в качестве амортизатора для различных потребительских и коммерческих товаров, включая постельное белье, мебель, автомобильные интерьеры, подкладку для ковров и упаковку. Гибкая пена может быть создана практически любой формы и плотности. Он легкий, прочный, поддерживающий и удобный.

    Гибкий пенополиуретан составляет около 30 процентов всего рынка полиуретана в Северной Америке и используется в основном для изготовления постельных принадлежностей, мебели и в автомобильной промышленности.

  • Жесткий пенополиуретан

    Жесткий пенополиуретан и полиизоцианурат (полиизо) — одна из самых популярных в мире энергоэффективных и универсальных изоляционных материалов.Эти пены могут значительно снизить затраты на электроэнергию, делая коммерческую и жилую недвижимость более эффективной и комфортной.

    По данным Министерства энергетики США, на отопление и охлаждение приходится около 56 процентов энергии, потребляемой в типичном доме в США, что делает его самыми большими расходами на электроэнергию для большинства домов. Чтобы поддерживать равномерную температуру и снизить уровень шума в домах и коммерческих объектах, строители обращаются к жесткому полиуретану и полиизоциануратной пене.Эти пены представляют собой эффективные изоляционные материалы, которые можно использовать для изоляции крыш и стен, изолированных окон, дверей и герметиков для воздушных барьеров.

  • Покрытия, клеи, герметики и эластомеры (CASE)

    Использование полиуретанов на рынке покрытий, клеев, герметиков и эластомеров (CASE) предлагает широкий и постоянно расширяющийся спектр применений и преимуществ.Полиуретановые покрытия могут улучшить внешний вид продукта и продлить срок его службы. Полиуретановые клеи могут обеспечить сильное склеивание, в то время как полиуретановые герметики обеспечивают более плотное уплотнение. Полиуретановым эластомерам можно придать практически любую форму, они легче металла, обеспечивают превосходное восстановление напряжений и могут быть устойчивыми ко многим факторам окружающей среды.

  • Термопластический полиуретан (ТПУ)

    Термопластичный полиуретан (ТПУ) предлагает множество комбинаций физических свойств и применений в обработке.Он очень эластичный, гибкий и устойчивый к истиранию, ударам и погодным условиям. TPU можно окрашивать или изготавливать различными способами, и их использование может увеличить общую долговечность продукта.

    TPU — это полностью термопластичный эластомер. Как и все термопластические эластомеры, ТПУ эластичен и перерабатывается в расплаве. Кроме того, его можно перерабатывать на оборудовании для экструзии, впрыска, выдувания и компрессионного формования. Он может быть получен вакуумным формованием или нанесением покрытия из раствора и хорошо подходит для самых разных производственных технологий.TPU может обеспечить значительное количество комбинаций физических свойств, что делает его чрезвычайно гибким материалом, пригодным для десятков применений, таких как строительство, автомобилестроение и обувь.

  • Реакционное литье под давлением (RIM)

    Автомобильные бамперы, электрические панели корпуса, корпуса компьютеров и телекоммуникационного оборудования — это некоторые из деталей, изготовленных из полиуретанов с использованием реактивного литья под давлением (RIM).Добавляя гибкость конструкции, процесс полиуретановой RIM позволяет производить детали, которые обычно не
    достижимо с использованием типичных процессов литья под давлением, таких как толстостенные и тонкостенные детали, герметизированные внутренние части и вспененные сердечники. В дополнение к высокой прочности и малому весу полиуретановые RIM-детали могут обладать термостойкостью, теплоизоляцией, стабильностью размеров и высоким уровнем динамических свойств. Автомобили, строительство, бытовая техника, мебель, товары для отдыха и спорта — вот лишь некоторые из рынков и приложений, использующих технологию RIM.

  • Связующие

    Полиуретановые связующие используются для склеивания между собой частиц и волокон различных типов. Их основные области применения — производство деревянных панелей, резиновых или эластомерных напольных покрытий и литье в песчаные формы для литейной промышленности. Наибольший объем применения полиуретановых связующих приходится на производство ориентированно-стружечных плит (OSB).Эти деревянные панели используются в конструкционной обшивке и настиле полов, промышленных домах, балках и балках, а также при производстве панелей. Подложка для ковров Rebond использует полиуретановые связующие для склеивания кусков поролона, которые часто представляют собой гибкий пенополиуретан, при его производстве.

  • Водоразбавляемые полиуретановые дисперсии (PUD)

    Водоразбавляемые полиуретановые дисперсии (PUD) — это покрытия и клеи, в которых в качестве основного растворителя используется вода.С усилением федерального регулирования количества летучих органических соединений (ЛОС) и опасных загрязнителей воздуха (HAP), которые могут выбрасываться в атмосферу, PUD используются в более промышленных и коммерческих целях.

  • Одежда

    Когда ученые обнаружили, что из полиуретанов можно делать тонкие нити, они были объединены с нейлоном, чтобы сделать более легкую и эластичную одежду.За прошедшие годы полиуретаны были усовершенствованы и превратились в волокна спандекса, полиуретановые покрытия и термопластичные эластомеры.

    Благодаря современным достижениям в области полиуретановой техники производители могут изготавливать широкий ассортимент полиуретановой одежды из искусственной кожи и кожи, используемой для изготовления одежды, спортивной одежды и различных аксессуаров.

  • Приборы

    Полиуретаны — важный компонент в основных бытовых приборах, которые потребители используют каждый день.Чаще всего полиуретаны используются в крупных бытовых приборах, это жесткие пенопласты для систем теплоизоляции холодильников и морозильников. Жесткий пенополиуретан — важный и экономичный материал, который можно использовать для удовлетворения требуемых энергетических характеристик в бытовых холодильниках и морозильниках. Хорошие теплоизоляционные свойства жестких пенополиуретанов являются результатом сочетания мелкой структуры пенопласта с закрытыми порами и ячеистых газов, которые сопротивляются теплопередаче.

  • Автомобили

    Полиуретаны используются в автомобилях.Помимо пенопласта, который делает автомобильные сиденья удобными, в бамперах, внутренних потолочных секциях, кузове, спойлерах, дверях и окнах используются полиуретаны. Полиуретан также позволяет производителям обеспечивать водителям и пассажирам значительно больший «пробег» автомобиля за счет снижения веса и повышения экономии топлива, комфорта, устойчивости к коррозии, изоляции и звукопоглощения.

  • Строительство и строительство

    Сегодняшние дома требуют материалов с высокими эксплуатационными характеристиками, которые являются прочными, но при этом легкими; работают хорошо, но легко устанавливаются; и долговечны, но также универсальны.Полиуретан помогает сберечь природные ресурсы и помогает сохранить окружающую среду за счет снижения энергопотребления. Благодаря превосходному соотношению прочности и веса, изоляционным свойствам, долговечности и универсальности полиуретан часто используется в строительстве. Доступность этих универсальных материалов и комфорт, который они обеспечивают домовладельцам, сделали полиуретановые компоненты частью домов повсюду.

    Полиуретан используется во всем доме.В полах мягкий пенопласт обеспечивает мягкость ковра. В крыше отражающие пластиковые покрытия поверх полиуретановой пены могут отражать солнечный свет и тепло, помогая дому оставаться прохладным и снижая потребление энергии. Строительные материалы из полиуретана добавляют гибкости дизайну новых домов и проектов реконструкции. Панели с пенопластом предлагают широкий выбор цветов и профилей для стен и крыш, в то время как входные двери с пенопластом и гаражные ворота доступны в различных отделках и стилях.

  • Композитная древесина

    Полиуретаны играют важную роль в современных материалах, таких как композитная древесина.Связующие на основе полиуретана используются в композитных деревянных изделиях для постоянного приклеивания органических материалов к ориентированно-стружечным плитам, древесноволокнистым плитам средней плотности, длинномерных пиломатериалов, клееных пиломатериалов и даже соломенных плит и ДСП.

  • Электроника

    Непененные полиуретаны, часто называемые «заливочными смесями», часто используются в электротехнической и электронной промышленности для герметизации и изоляции хрупких, чувствительных к давлению, микроэлектронных компонентов, подводных кабелей и печатных плат.

    Полиуретановые заливочные компаунды специально разработаны разработчиками для удовлетворения разнообразных физических, термических и электрических свойств. Они могут защитить электронику, обеспечивая отличные диэлектрические и адгезионные свойства, а также исключительную стойкость к растворителям, воде и экстремальным температурам.

  • Напольные покрытия

    Полиуретаны могут сделать полы, по которым мы ходим каждый день, более прочными, более легкими в уходе и более эстетичными.Использование гибкой полиуретановой пены в качестве подложки для ковров в жилых или коммерческих помещениях может значительно продлить срок службы ковра, защитить его внешний вид, обеспечить дополнительный комфорт и поддержку, а также может снизить окружающий шум.

    Полиуретаны также используются для покрытия полов, от дерева и паркета до цемента. Это защитное покрытие устойчиво к истиранию и воздействию растворителей, его легко чистить и поддерживать. С полиуретановой отделкой новый деревянный, паркетный или цементный пол изнашивается лучше и дольше, а старый пол можно отполировать, чтобы он снова выглядел новым.

  • Мебель

    Полиуретан, в основном в виде гибкой пены, является одним из самых популярных материалов, используемых в домашней обстановке, такой как мебель, постельное белье и ковровое покрытие. В качестве амортизирующего материала для мягкой мебели гибкий пенополиуретан делает мебель более прочной, удобной и поддерживающей.

  • Морской

    Миллионы американцев любят кататься на лодках каждый год. Отчасти водный туризм продолжает оставаться популярным благодаря усовершенствованиям в технологии судоходства, в которые полиуретановые материалы вносят важный вклад.

    Полиуретановые эпоксидные смолы защищают корпуса лодок от воды, погодных условий, коррозии и элементов, которые увеличивают сопротивление, влияют на гидродинамику и снижают долговечность.Сегодня яхтсмены могут чувствовать себя как дома на воде, отчасти благодаря гибкой полиуретановой пене. Кроме того, жесткий пенополиуретан изолирует лодку от шума и экстремальных температур, обеспечивает сопротивление истиранию и разрыву, а также увеличивает несущую способность при минимальном весе. Термопластичный полиуретан также отлично подходит для использования в морской промышленности. Это эластичное, прочное и легко обрабатываемое вещество, хорошо подходящее для покрытий проводов и кабелей, трубопроводов двигателей, приводных ремней, гидравлических шлангов и уплотнений и даже для судостроения.

  • Медицинский

    Полиуретаны обычно используются в ряде медицинских приложений, включая катетеры и трубки общего назначения, больничные постельные принадлежности, хирургические простыни, перевязочные материалы для ран и различные устройства, изготовленные литьем под давлением. Чаще всего они используются в краткосрочных имплантатах. Использование полиуретана в медицине может быть более рентабельным и обеспечить большую долговечность и прочность.

  • Упаковка

    Полиуретановая упаковочная пена (PPF) может обеспечить более экономичную, плотно прилегающую амортизацию, которая однозначно и надежно защищает предметы, которые должны оставаться на месте во время транспортировки. PPF широко используется для безопасной защиты и транспортировки многих предметов, таких как электронное и медицинское диагностическое оборудование, хрупкая стеклянная посуда и крупные промышленные детали.PPF — это универсальное решение для многих задач, связанных с упаковкой, которое позволяет сэкономить время и повысить рентабельность, предоставляя индивидуально подобранный контейнер для каждой партии.

  • Зачем использовать пенополиуретан — пенополиуретан высокой и низкой плотности

    НАША ПОЛИУРЕТАНОВАЯ ПЕНА РАЗДЕЛЕНА НА ДВЕ КАТЕГОРИИ:

    • Жесткие пенополиуретаны с закрытыми порами представляют собой пластмассы, состоящие из непрерывных и полностью сферических или продолговатых пузырьков.
    • Гибкие пенополиуретаны с открытыми порами представляют собой пластмассы с неполными стенками ячеек и отверстиями, через которые жидкость и воздух могут легко проходить.

    Полиуретан образуется при взаимодействии изоцианата и полиола.Он становится пеной при введении газа либо в результате реакции изоцианата с водой, либо с пенообразователями. General Plastics имеет ряд запатентованных рецептур, которые были созданы для удовлетворения широкого спектра требований к тепловым и физическим свойствам.

    Жесткие пенополиуретаны используются в композитных конструкциях. Пенополиуретан производят большими блоками либо в процессе непрерывной реакции, либо в периодическом процессе. Затем блоки разрезают на листы или другие формы.Они также могут быть индивидуально отформованы или отлиты в детали нестандартной формы.

    Пенопласты с интегральной обшивкой или пенопласты с самостоятельной обшивкой соединяют оболочку высокой плотности и сердцевину низкой плотности. Самоснимающиеся пены доступны в виде гибких или жестких пенопластов. Кожа полезна из-за способности формировать нестандартные текстуры для украшения или придавать свойства стойкости к истиранию или химическому воздействию.

    Обратите внимание, что General Plastics НЕ производит и не поставляет:

    • Мягкая пена для подушек, продается в рулонах
    • Мешки полиуретановые
    • Пенополиуретан напыляемый / изоляция для жилых помещений

    УЧЕТ ПЛОТНОСТИ ПЕНОПОЛИНЫ

    Плотность пены колеблется от 2 до 60 фунтов.на кубический фут (от 48 до 961 кг / м 3 ). В отличие от термопластичных пен (ПВХ, SAN), удельная стоимость пенополиуретана линейно увеличивается с плотностью, поэтому пенополиуретан плотностью 20 фунтов на кубический фут будет примерно вдвое дороже 10 фунтов. мыло.

    Пены одинаковой плотности могут значительно различаться по механическим свойствам в зависимости от процесса производства пенопласта. Различные методы производства могут потребовать уникальных химических составов и температур отверждения пены. Начиная процесс выбора пены, важно сослаться на информацию в листе технических данных, чтобы убедиться, что соответствующий тип пены используется в соответствии с требованиями к свойствам вашего приложения.

    Если проблема воспламеняемости вызывает беспокойство, узнайте, какой тип вспенивателя используется для образования ячеек в пене: многие производители используют углекислый газ (побочный продукт химической реакции образования пены) для образования ячеек в пене. Другие производители изменили пенообразователи в своих процессах производства пеноматериалов низкой плотности. Переход с хлорфторуглерода (HCFC, HFC) на пентан может отрицательно повлиять на огнестойкость пены.

    НАШИ ПЕРВИЧНЫЕ ПРОДУКТЫ И ПРИМЕНЕНИЕ ДЛЯ ЗАКРЫТЫХ ЯЧЕЕК

    Высококачественные формованные пенополиуретаны

    General Plastics с закрытыми порами и самосвязывающимися ячейками используются производителями оригинального оборудования для высокоэффективных применений, особенно в аэрокосмической, оборонной, морской, ядерной и других отраслях промышленности.Обычно они используются в производстве оснастки и пресс-форм; как композитный сердечник; прототипный материал; для защиты взрывчатых или радиоактивных материалов; и как заменитель дерева для трехмерных знаков, дисплеев и скульптур.

    РАЗНИЦА КАЧЕСТВА, СЕРТИФИЦИРОВАННАЯ GP

    • General Plastics сертифицирована по ISO 9001: 2015 / AS9100D и отвечает требованиям NQA, MIL-1-45208A и MIL-P-26541.
    • Наши пены для аэрокосмической промышленности удовлетворяют таким требованиям, как Boeing Company D6-82479, BMS 8-133, BMS 8-436 и FAR 25.853 E-84,
    • Если вам нужна дополнительная информация о наших сертификатах и ​​квалификации, позвоните нам.

    СООТВЕТСТВИЕ

    • Зависит от наших продуктов в отношении единообразия — от блока к блоку, от картона к картону, от партии к партии.
    • Вся продукция General Plastics производится в США в Такоме, Вашингтон.
    • Ожидайте постоянной плотности на всех листах и ​​булках — градиент плотности составляет менее +/- 10% от номинальной плотности и часто ближе к +/- 5%.
    • Точная обрезка булочек и горизонтальная резка ленточной пилой позволяют вырезать листы прямоугольной формы.
    • Не разрушается, не трескается и не изменяет химических свойств с течением времени.

    ВАРИАНТЫ РАЗМЕРА

    • В зависимости от плотности пенопласта наши стандартные размеры листов составляют 48 x 96 дюймов (122 x 244 см) и 18 x 100 дюймов (46 x 254 см).
    • Мы можем поставить булочки до 30 дюймов (76 см) в высоту, до 60 дюймов (152 см) в ширину и до 120 дюймов (304 см) в длину, в зависимости от плотности пены — узнавайте о наличии блоков нестандартного размера и стоимости.
    • Мы можем предоставить машинный допуск от 0,005 ″ (0,0127 см) до 0,060 ″ (0,152 см).

    ВЫРЕЗАННЫЙ ВЫШЕ

    • Гладкая, однородная, беззернистая структура ячеек поддерживает очень тонкую отделку поверхности
    • Достаточно прочные, чтобы обеспечить четкую резку и отличную четкость кромок
    • Простая резка, резьба и формовка даже с помощью обычных деревообрабатывающих инструментов
    • Пена легко обрабатывается или фрезеруется на станках с ЧПУ, не создавая статического электричества
    • Большинство составов не содержат наполнителей из стеклянных шариков или стекловолокна, которые снижают прочность пены или повреждают режущие инструменты

    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

    • Стабильность размеров — листы не деформируются, не скручиваются и не изгибаются
    • Выдерживает сильную жару или холод
    • Обладает хорошей прочностью, жесткостью и стабильностью даже при высоких температурах.
    • Не впитывает воду, не гниет, не разлагается и не растворяется в земляном полотне.
    • Высокая устойчивость к большинству химикатов и растворителей, даже при термоформовании.
    • Наши продукты легко склеиваются с использованием различных связующих материалов, в том числе металлов и смол для ламинирования стекловолокна
    • Совместимость с растворами, клеями и бетоном
    • Легко покрывается практически любой смолой или системой покрытия; минимальное впитывание краски

    ЭКОЛОГИЧЕСКОЕ КАЧЕСТВО

    • Продукты LAST-A-FOAM ® не содержат ХФУ и ЛОС.
    • Они не выделяют токсичных паров и не выщелачивают химические вещества в окружающую почву.
    • Материал биологически и химически инертен, поэтому не поддерживает грибок и не привлекает грызунов и насекомых.
    • Многие из наших пеноматериалов негорючие и самозатухающие.

    ЭКОЛОГИЧЕСКАЯ ПЕНА

    General Plastics производит коммерческие экологически чистые пенопласты высокой плотности. Наш «зеленый» контент объединяет постиндустриальные, постпотребительские и быстро возобновляемые материальные ресурсы.

    Найдите содержание зеленого в пенопластах General Plastics серии LAST-A-FOAM ® FR-4500, FR-4600 (Sign Foam 4), FR-7100 и R-9300. Процент зеленого содержания зависит от линейки продуктов и плотности.

    Например:

    • Каждый лист нашего продукта FR-4500 плотностью 6 фунтов отвлекает эквивалент 32 бутылок с водой со свалок
    • При плотности 50 фунтов каждый лист нашей пены FR-4500 отводит эквивалент 512 бутылок с водой со свалок.
    • Наши пеноблоки для непрерывной изоляции серии R-9300 для строительства промышленных зданий и холодильных складов могут участвовать в сертификации LEED с материалами, содержащими до 11% зеленых материалов.

    РАБОТА С ПОЛИУРЕТАНОМ НИЗКОЙ ПЛОТНОСТИ GENERAL PLASTICS

    Для получения полной информации об этих аспектах работы с нашими материалами HDU (уретан высокой плотности), пожалуйста, обратитесь к нашему Руководству пользователя по инструментам и формам.

    Руководство пользователя оснастки и пресс-форм охватывает следующие темы:

    • Склеивание и клеи
    • Резка и инструмент
    • Цвета, Покрытие
    Цвета, покрытие и окраска

    Наши гибкие пенопласты белого цвета, а большинство жестких пенопластов желтого цвета.В зависимости от количества мы также можем сформулировать определенные цвета. Имейте в виду, что воздействие ультрафиолетового излучения затемняет внешний цвет этих пенопластов. Если внешний вид вызывает беспокойство, мы рекомендуем покрасить их непрозрачным покрытием.

    Наши пенополиуретаны подходят для любого лакокрасочного покрытия и очень мало впитывают краску.

    Рекомендуемые покрытия включают автомобильные или деревообрабатывающие покрытия. Для наружных работ хорошо подойдет акрилово-латексная краска или эмаль.

    Тепловые свойства

    Термические свойства наших пенопластов см. В наших технических паспортах (TDS).Обратите внимание, что эти числа являются приблизительными, и мы рекомендуем вам протестировать продукт для вашего конкретного приложения.

    Наша система наименования продуктов

    Большинство продуктов серии пенополиуретанов General Plastics идентифицируются по категории пенопласта, плотности и часто другим важным характеристикам следующим образом:

    Жесткие пенопласты, за исключением наших пен TR-Marine, начинаются с «FR» для огнестойких жестких или просто с буквы «R» для жестких, за которыми следуют номер серии и плотность пены:

    Примеры:

    • R-3315 — Серия жестких погружных пенопластов 3300, 15 фунтов.на кубический фут плотности
    • FR-3720 — огнестойкий, серия Rigid 3700 Performance Core, 20 фунтов. на кубический фут плотности

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
      Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г.,
      браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
      Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie
    потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.

    PUR-50-P PUR-50-H PIR-50-P
    Ср.Скорость (мм / с) Сред. Скорость (мм / с) Сред. Скорость (мм / с)
    Метод 1 0,40 0,44 0,16
    Метод 2 0,35 0,34 0,18