Схема подключения электросчетчика через трансформаторы тока: Подключение счетчика через трансформаторы

Подключение счетчика через трансформаторы тока

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

В статье про схемы подключения электросчетчиков прямого включения мы познакомились с подключением однофазных и трехфазных электросчетчиков прямого, или его еще называют, непосредственного включения в сеть. В той же статье я упоминал, что существует способ подключения электросчетчиков и через трансформаторы тока и напряжения.

Давайте рассмотрим на примере трехфазных счетчиков самые распространенные схемы.

Счетчики необходимы для учета электроэнергии потребителями в трехпроводных и четырехпроводных сетях переменного тока с частотой 50 (Гц).

Трехфазные счетчики электрической энергии выпускаются на напряжение 3х57,7/100 (В) или 3х230/400 (В).

Подключение счетчиков электрической энергии к вышеперечисленным сетям осуществляется через измерительные трансформаторы тока (ТТ) со вторичным током 5 (А) и трансформаторы напряжения (ТН) со вторичным напряжением 100 (В).

При подключении счетчика необходимо строго следить за полярностью начала и конца обмоток трансформаторов тока, как первичной (Л1 и Л2), так и вторичной (И1 и И2). Также необходимо соблюдать полярность обмоток трансформатора напряжения (подробнее об этом Вы можете почитать в статье про трансформатор напряжения НТМИ-10).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока

ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик ЦЭ6803В 3х220/380 (В), 1-7,5 (А).

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моей статьи про схему подключения трехфазного счетчика ПСЧ-4ТМ.05.04 в четырехпроводную сеть напряжением 380/220 (В) с помощью 3 трансформаторов тока.

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 2 трансформаторов напряжения

ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

Рекомендую Вам при подключении счетчиков электроэнергии обязательно применять цифровую и буквенную маркировку проводов вторичных цепей, чтобы облегчить Вам и Вашим коллегам дальнейшую эксплуатацию и обслуживание.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как подключить счётчик через трансформатор тока

Не во всех случаях есть возможность измерять израсходованную электроэнергию с помощью простого подключения устройства учёта, то есть счётчика, в сеть. В электрических цепях с переменным напряжением 0,4 кВ (380 Вольт), силой тока больше чем 100 Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Такое подключение называется косвенным и только оно даёт точные показатели при измерении таких мощностей. Для начала перед рассмотрением самих схем соединения, нужно разобраться в принципе работы измерительного трансформатора.

Принцип работы измерительных трансформаторов

Принцип измерительного и обычного трансформатора тока (ТТ) не имеют различия кроме точности передачи тока во вторичной обмотке. Не измерительные ТТ применяются в цепях токовой релейной защиты, однако, в любом случае принцип их работы одинаков. По первичной обмотке, включенной последовательно в линию, будет протекать электрический ток такой же, как и в нагрузке. Иногда, это зависит от конструкции ТТ, первичной обмоткой может служить алюминиевая или медная шина, идущая от источника энергии, к потребителю. За счёт прохождения тока и наличия магнитопровода во вторичной обмотке возникает тоже ток но уже меньшей величины, который уже можно измерять с помощью обычных измерительных приборов, или же счётчиков. При расчете израсходованной электроэнергии нужно учитывать коэффициент, определяющий окончательную величину затрат. Фазный ток, протекающий по линии, будет в разы больше чем ток вторичной обмотки, и зависит он от коэффициента трансформации.

Таким образом, данная манипуляция и установленный трансформатор тока обеспечивает не только возможность измерять большие тока, но и способствуют безопасности проведения таких измерений.

Интересным является тот факт что все ТТ выдают при определённом номинале, на который он рассчитан в первичной обмотке, всего лишь 5 Ампер во вторичной. Например, если номинальный ток первичной обмотки будет 100А, то во вторичной будет 5 А. Если оборудование более мощное и выбирается измерительный трансформатор 500А, то всё равно коэффициент трансформации выбран таким образом, что во вторичной обмотке будет опять-таки 5 Ампер. Поэтому выбор счётчика здесь очевиден и несложен, главное, чтоб он был рассчитан на 5 Ампер. Вся ответственность лежит на выборе именно измерительного трансформатора. Ещё один важный фактор работы такой цепочки это частота переменного напряжения, она должна быть строго 50 Гц. Это стандартная величина частоты, которая чётко контролируется компанией поставщиком электроэнергии и её отклонение недопустимо для работы любого, применяемого в странах постсоветского пространства стандартного электрооборудования. По всей плане эта частота регламентируется другими величинами.

Одной из важных особенностей ТТ является также невозможность работы его без нагрузки, а когда это необходимо какими-либо мероприятиями, то стоит закоротить концы вторичной обмотки, чтобы не было пробоя.

Схема подключения к трёхфазной цепи

Существует несколько схем предназначенных для подключения счетчика через трансформаторы тока, вот самая распространённая из них

Как видно, измерительный трансформатор имеет клеммы, которые обозначены Л1 и Л2. Л1 обязательно подключается к источнику электроэнергии, а Л2 к нагрузке. Перепутывать их и переставлять местами нельзя.

А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2. Для цепей измерительного трансформатора рекомендуется использовать провода с сечением не меньше 2,5 мм2. Желательно иметь и выполнять монтаж соответствующего цвета проводами, для упрощения их коммутации. Стандартная раскраска жил и токоведущих шин:

  • Жёлтый — это фаза А;
  • Зелёный — В;
  • Красный — С;
  • Синий проводник или чёрный обозначает земляной или нулевой провод.

При монтаже лучше использовать клеммные коробки для соединения, чтобы было легче в случае неисправности производить диагностику или замену какого-либо узла или элемента. Это связано с тем что сами счётчики пломбируются.

Схема подключения соединенных ТТ звездой также применяется в электроустановках, как видно вторичная обмотка подлежит заземлению. Это делается для того, чтобы обезопасить, и устройства учета, и персонал обслуживающий их от возможного появления, в результате пробоя во вторичных цепях, высокого напряжения.

Недостатки такого подключения

  1. Ни в коем случае в трёхфазной цепи нельзя использовать трансформаторы с разными коэффициентами трансформации, подключаемые к одному и тому же счётчику.
  2. Существенный недостаток, который был замечен при применении устаревших индукционных электросчётчиков. При низких показателях тока в первичной цепи его вращающийся механизм может оставаться без движения, а значить не учитывать электроэнергию. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. С цифровыми современными приборами учёта такая ситуация невозможна.

Как подключить через ТТ счётчик в однофазной цепи

Очень редко появляется необходимость подключать счетчик через трансформаторы тока в однофазных сетях, так как токи в них не достигают больших величин. Но всё же если такая необходимость есть нужно воспользоваться схемой, приведённой ниже.

На рисунке «а» изображено обычное прямое подключение счётчика, на рисунке «б» через измерительный ТТ. Катушки напряжения в этих схемах подключены идентично, а вот токовые цепи подключаются через трансформатор тока. В таком случае производится гальваническая развязка, за счёт которой и возможно данное подключение.

В любом случае измерение затраченной электроэнергии необходимо, так как только так можно законно покупать этот вид продукции.

Подключение счетчика электроэнергии в низковольтную сеть большой мощности

Для подключения счетчика в сеть большой мощности (с большими токами) необходимо применять специальные устройства — измерительные трансформаторы тока. Речь идет о низковольтных сетях до 0,66 кВ, где уровень номинального тока 100 А и выше. Счетчики прямого включения не предназначены для использования в таких мощных сетях, поэтому и требуется снизить уровень рабочего тока до величины, удобной для измерения приборами учета — 5 А.

Способ подключения в сеть счетчика, при котором токовые обмотки счетчика подключаются к измерительным выводам трансформатора тока называют полукосвенным. При этом способе подключения счетчика используется рабочее напряжение сети (обмотки напряжения подключаются к электросчетчику напрямую).

Существует также и косвенный способ подключения счетчика, однако он применяется для учета электроэнергии в установках с напряжением более 1 кВ. При косвенном подключении счетчика кроме трансформаторов тока применяются трансформаторы напряжения, снижающие высокое значение напряжение до 100 В.

Класс точности и его значение для учета электроэнергии

Правила Устройства Электроустановок (сокращенно ПУЭ) устанавливают классы точности для трансформаторов тока различных категорий применений. Так, для коммерческого учета должны устанавливаться трансформаторы тока с классом точности не более 0,5, а для технического учета необходим класс точности не выше 1,0.

Также встречаются трансформаторы тока с практически одинаковыми классами точности 0,5 и 0,5S. В чем заключается между ними разница? Погрешность обмотки ТТ с классом точности 0,5 не нормируется ниже 5%. Это значит, что при нагрузке в главной цепи ниже 5% электрическая энергия не будет учитываться. Класс точности 0,5S говорит о том, что трансформатор тока будет передавать сигнал на счетчик при уровне нагрузки не ниже 1%.

Схемы подключения счетчика через трансформаторы тока

Подключить трехфазный счетчик электроэнергии в мощную низковольтную сеть с глухозаземленной нейтралью можно по приведенным ниже схемам.

Цепи тока и напряжения в этой схеме, которую еще называют «десятипроводной» (по количеству используемых проводов), разделены. Подобное разделение цепей напряжения и тока позволяет повысить электробезопасность и легко проверять правильность подключения.

Следующая схема, в которой все выводы И2 измерительных трансформаторов тока соединяются в общую точку и присоединяются к нулевому проводнику, называется «звезда» (т. к. трансформаторы тока соединены по одноименной схеме). Она экономична с точки зрения использования проводов, однако усложняет проверку схемы включения счетчика представителями энергоснабжающих организаций.

«Семипроводная» схема на сегодняшний день является устаревшей, но так или иначе до сих пор встречается. Эта схема, будучи самой экономичной, опасна для обслуживающего персонала и потому должна быть модернизирована до десятипроводной.

Подключения счетчика электроэнергии через переходную испытательную коробку (КИП)

Как указано в ПУЭ (п 1.5.23.), подключать трехфазные счетчики электроэнергии следует через испытательные коробки, упомянутые выше. Они (коробки испытательные переходные) позволяют производить замену счетчика, не отключая нагрузку, так как все необходимые переключения можно произвести в КИП.

Также встречаются низковольтные сети с изолированной нейтралью (система IT). Если быть более точным, то в сети с такой системой заземления нейтральный проводник может быть как полностью изолирован, так и заземлен при помощи специальных приборов, обладающих большим электрическим сопротивлением.

Такая система (IT) применяется на объектах, к которым предъявляются высокие требования по надежности и безопасности электроснабжения. Например, изолированная система IT применяется для электрических установок угольных шахт, для мобильных дизельных и бензиновых электростанций, а также для аварийного освещения и электроснабжения больниц. Подключить счетчик электроэнергии к трансформаторам тока в сеть с изолированной нейтралью можно по следующей схеме.

Измерительные трансформаторы тока — это устройства, преобразующие большие значения тока главных цепей до величины 5 А, удобной для измерения счетчиками электроэнергии. Именно это и определяет их основное назначение: питание цепей учета электроэнергии (коммерческий и технический) в мощных установках, там где счетчики прямого включения просто не могут применяться.

По материалам КЭАЗ

Схема подключения трансформатора тока — варианты подключения

Токовые трансформаторы являются важными защитным устройством релейного типа.

Схема подключения трансформатора тока предполагает использование первичной и вторичной обмотки с учетом коэффициента относительной погрешности.

В статье подробно о монтаже счетчика через трансформатор тока.

Схема подключения счетчика через трансформаторы тока

Установка электрического счетчика осуществляется в соответствии с основными правилами и требованиями, предъявляемыми к схеме подключения прибора. Счетчик устанавливается при температурном режиме не ниже 5оС.

Приборы энергоучета, наряду с любой другой электроникой, крайне тяжело переносят низкотемпературное воздействие. Установка электрического счетчика на улице потребует сооружения специального герметичного утепленного шкафа. Прибор учета фиксируется на высоте не более 100-170 см, что облегчает эксплуатацию и его обслуживание.

Схема подключения счетчиков МЕРКУРИЙ

Для самостоятельной установки необходимо приобрести электросчетчик и щиток, изоляционные автоматические материалы, кабеля и крепежные элементы, DIN-рейки, а также подготовить набор монтажного инструмента.

Подключение однофазного прибора

При монтаже однофазного прибора учета, особое внимание необходимо уделить порядку подключения кабелей на клеммные элементы:

  • на первую клемму производится подсоединение фазного провода. Вводимый кабель чаще всего обладает белым, коричневым или черным окрашиванием;
  • на вторую клемму осуществляется подключение фазного провода, испытывающего силовую нагрузку. Такой кабель обычно бывает белого, коричневого или черного цвета;
  • на третью клемму выполняется подсоединение электропровода «ноль». Этот вводной кабель имеет голубую или синевато-голубую маркировку;
  • на четвертую клемму производится подключение нулевого провода, имеющего голубое или синевато-голубое окрашивание.

Подключение однофазного прибора

Обеспечивать защиту на заземление для устанавливаемого и подключаемого электрического прибора учета не потребуется.

Следует отметить, что дополнительные участки подсоединения на однофазном электросчетчике являются вспомогательными, и обеспечивают эффективность эксплуатации или автоматизацию учета используемой электроэнергии.

Схема подключения трехфазного счетчика через трансформаторы тока

Трёхфазные устройства учета электроэнергии комплектуются, как правило, DIN-рейкой, двумя видами панелей, которые прикрывают подключаемые клеммы, а также руководство и пломбы. Технология самостоятельной установки:

  • монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии;
  • спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов;
  • подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения.

Схема монтажа трехфазного счетчика

Удобным является использование токопроводящих жил из медных проводов, сечение которых не меньше, чем стандартные размеры вводного кабеля.

При прямом подсоединении трехфазного электрического счётчика, без применения вводной автоматизации, на соответствующие клеммы прибора подключаются одновременно провода «фаза» и «ноль».

Соединение обмоток реле и трансформаторов тока

Принцип воздействия токового трансформатора не имеет существенных отличий от подобных характеристик стандартного силового прибора. Особенностью первичной трансформаторной обмотки является последовательное включение в измеряемую электрическую цепь. Кроме всего прочего, обязательно присутствует замыкание на вторичную обмотку на разные, подключенные друг за другом приборы.

В полную звезду

В условиях стандартного симметричного уровня токового протекания, трансформатор устанавливается на всех фазах. В этом случае вторичная трансформаторная и релейная обмотка объединяются в звезду, а связка их нулевых точек выполняется посредством одной жилы «ноль», а зажимы на обмотках подсоединяются.

Соединение трансформаторов тока и обмоток реле в полную звезду

Таким образом, трехфазное короткое замыкание характеризуется протеканием токов в обратном кабеле в условиях двух реле. Для двухфазного короткого замыкания, протекание тока отмечается в единственном или сразу в паре реле, согласно фазовому повреждению.

Любые замыкания, кроме «земля», сопровождаются протеканием в нулевом проводе токовой геометрической суммы в реле, приблизительно «О».

В неполную звезду

Особенностью двухфазной двухрелейной схемы подсоединения с образованием неполной звезды. К достоинствам такой схемы можно отнести реагирование на любой вид короткого замыкания, кроме земли фазы, а также вероятность применения данной схемы на междуфазных защитах.

Соединение трансформаторов тока и обмоток реле в неполную звезду

Таким образом, в условиях различных типов короткого замыкания, токовые величины в реле, а также уровень его чувствительности, будут разнообразными.

Недостаток подсоединения в неполную звезду представлен слишком низким коэффициентом чувствительности, по сравнению со схемой полной звезды.

Проверка трансформатора на работоспособность требуется, если имеются подозрения на его неисправность. Как проверить трансформатор мультиметром – инструкцию вы найдете в статье.

Как правильно установить заземление на даче, расскажем тут.

Как правильно выбрать провод заземления и какие марки наиболее популярны, читайте далее.

Подсоединение трансформаторов тока в фильтр токов нулевой последовательности

Токовые величины в реле проявляются исключительно при наличии однофазового и двухфазного короткого замыкания «земля».

Такой вариант находит широкое применение в защите от замыкания «земля».

В условиях нагрузки трехфазного и двухфазного короткого замыкания показатели IN=0.

Тем не менее, при наличии погрешности токовых трансформаторов, в реле наблюдается проявление небаланса или Iнб.

Подсоединение трансформаторов тока

В процессе выполнения последовательного подключения вторичной обмотки в условиях параллельного подсоединения, позволяет уменьшать трансформирующий коэффициент и увеличивать уровень тока на вторичной цепи. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.

Последовательное подсоединение

При варианте последовательного подключения токовых трансформаторов, обеспечивается повышение нагрузочных показателей. В этом случае применяются трансформаторы, имеющие идентичные показатели kТ.

Соединение обмоток трансформатора последовательно

При протекающем через прибор одинаковом токе, величина поделится на коэффициент два, а уровень нагрузки снизится в пару раз. Применение такой схемы актуально при подсоединении Y/D с целью обеспечения защиты дифференциального типа.

Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор. Трансформатор 220 на 12 Вольт – назначение и принцип действия рассмотрим подробно.

Об особенностях использования и монтажа шины заземления вы узнаете из этой информации.

Параллельное подсоединение

Такой вариант позволяет уменьшить показатели kТ.

При использовании токовых трансформаторов, обладающих одинаковым уровнем kТ, отмечается появление результативного трансформирующего коэффициента, сниженного в пару раз.

Таким образом, при последовательном подсоединении вторичных обмоток обеспечивается повышение уровня выходного напряжения и показателей мощности в условиях сохранения номинальных значений выходного тока.

Если обмотка вторичного типа на каждом трансформаторе предполагает напряжение на выход 6,0 В при номинальных токовых показателях 1,0 А, то последовательное подсоединение позволяет сохранить номинал, а уровень мощности повышается в два раза.

Параллельное подключение вторичной обмотки в таком варианте помогает обеспечивать показатели напряжения на выходе 6,0 В, а также уровень тока — в два раза выше.

Видео на тему

Схемы подключения счетчика через трансформаторы тока | Энергофиксик

Мы все знакомы с прямым подключением приборов учета. Ведь все однофазные и множество трехфазных счетчиков в частном секторе именно так и подключены. Но в случае того, если потребление электроэнергии превышает показатель в 100 Ампер, то прямое включение не подойдет. В таких случаях прибор учета подсоединяется через трансформаторы тока.

В данном материале я покажу наиболее распространенные схемы подключения счетчиков электроэнергии через трансформаторы тока и трансформаторы напряжения.

Схема подключения трехфазного электрического счетчика через три ТТ (трансформатор тока) и три ТН (трансформатор напряжения).

Под обозначением ТН1-ТН3 подразумеваются трансформаторы напряжения, а соответственно ТТ1-ТТ3 — это трансформаторы тока. Также посмотрите на пунктирное обозначение: так показана общая точка заземления трансформаторов, которая выполняется с целью обеспечения безопасности, но она может также и отсутствовать.

Схема присоединения трехфазного счетчика через три ТТ

На этой схеме также пунктиром обозначено соединение, которое может и не быть.

Схема соединения счетчика с применением двух трансформаторов тока

Схема присоединения счетчика через парочку трансформаторов тока и тройку трансформаторов напряжения

Схема присоединения прибора учета через два ТТ и два ТН

Схемы взяты с сайта zametkielectrika.ru

Выводы

Выше были приведены самые распространенные схемы присоединения приборов учета. Но хочу так же напомнить, что у подавляющего числа приборов учета (непосредственно на крышке или же в паспорте) присутствует схема подключения.

Еще важно учесть, что токовые цепи монтируются медными проводами с минимальным сечением в 2,5 квадрата, а цепи напряжения допустимо выполнять проводами сечением 1,5 квадрата. Причем использовать алюминий категорически запрещено.

Если статья оказалась вам полезна, то ставьте палец вверх.

Спасибо за внимание!

Подключение счетчика через трансформаторы тока (фото, видео, схема)

Электросчётчик – устройство, позволяющее осуществлять контроль и учёт потребляемой электрической энергии. Подключение счетчика через трансформаторы тока может осуществляться по нескольким схемам. Актуальным на сегодняшний день считается трёхфазный счётчик Меркурий 230. Монтаж счётчика для учёта использованной электроэнергии проводится путём подключения его через схему электроснабжения. Различают по конфигурации однофазные и трёхфазные счётчики, которые можно подключить прямым и непрямым способом.

Монтаж однофазного прибора

Подключение однофазного электросчётчика производится в область разрыва линии питания. Не должно быть подключения потребителей энергии к линии питания до монтажа счётчика. Установка автоматического выключателя будет основательной в целях защиты подводящей линии. Также он понадобится в процессе замены прибора. Благодаря установке выключателя не потребуется обесточивание всей подводящей линии.

Также целесообразным будет установка автоматического выключателя после монтажа электросчётчика через трансформаторы тока, для защиты отходящей линии при возникновении поломок цепи пользователя электроэнергии.

На каждом однофазном устройстве, зачастую с задней стороны, имеется схема подключения. Прибор с одной фазой подключается при помощи четырёх зажимов, посредством которых присоединение провод с устройством. Фазный и нулевой провода соединяют с зажимами по такой схеме:

  • клемма №1 к фазному проводу (L),
  • клемма №2 к отходящему фазному проводу,
  • клемма №3 к нулевому проводу питающей линии (N),
  • клемма №4 к отходящему нулевому проводу.

Данная схема подключения однофазного счётчика предназначена для установки в частном доме, квартире высотного дома, а также средней площади торгового павильона.

Установка трёхфазного устройства

Контроль и учёт электрической энергии в четырёх-проводных сетях требует применения как измерителя трёхфазного электросчётчика, подключение которого возможно прямым путём и через трансформаторы тока. Устройство для измерения электроэнергии, подключаемое по схеме с использованием трансформаторов тока называется трансформаторным счётчиком.

Применение трансформаторов тока необходимо при полукосвенном включении счётчика к электрической сети и установленной мощности за пределами 60 кВт. Эти дополнительные устройства отличаются использованием электрического провода вместо первичной обмотки. Основываясь на законы индукции, протекание тока по проводнику при вторичной обмотке происходит электрический заряд, величину которого контролирует и учитывает прибор.

Расчёт объёма использованной электрической энергии осуществляется путём умножения показаний измерительного прибора на коэффициент трансформации. В качестве источников информации при подключении устройств контроля и учёта электричества путём выступают трансформаторы тока.

Подключение через трансформаторы тока

Самой актуальной на сегодняшний день считается схема подключения десятипроводная, преимуществом которой является изоляция силовых цепей.

Трансформаторы тока обеспечивают эту самую изоляцию силовых цепей. Для применения в бытовых или промышленных условиях измерительного устройства изоляция или по-другому гальваническая развязка является важным фактором, обеспечивающим безопасность. К минусам такого способа следует отнести достаточно большое количество проводов.

Схема подключения производится в чёткой последовательности:

  1. клемма №1 – вход фазного привода (А).
  2. клемма №2 – вход измерительной обмотки фазного привода (А).
  3. клемма №3 – выход фазного привода (А).
  4. клемма №4 – вход фазного привода (В).
  5. клемма №5 – вход измерительной обмотки фазного привода (В).
  6. клемма №6 – выход фазного привода (В).
  7. клемма №7 – вход фазного привода (С).
  8. клемма №8 – вход измерительной обмотки фазного привода (С).
  9. клемма №9 – выход фазного привода (С).
  10. клемма №10 – вход нулевого привода (N).
  11. клемма №11 – выход нулевого привода (N).

В процессе установки измерительного устройства электроэнергии, трансформаторы подключают к разрыву цепи посредством специальных зажимов, называемых Л1 и Л2.

Подключение трехфазного счетчика

Одной из упрощённых версий подключения трёхфазного счётчика через трансформаторы тока считается сведение их в конфигурацию по внешним характеристикам похожую на звезду. Такой способ облегчает установку счётчика, поскольку задействуется значительно меньше проводов. Это обусловлено сложной конфигурацией внутренней схемы устройства.

Более устаревшей, но всё же в действительности встречаемой является семипроводная схема подключения счётчика с трёмя фазами через трансформаторы тока.

Минусом семипроводного способа считается отсутствие изоляции измерительных цепей, что является крайне небезопасным фактором при использовании и обслуживании прибора.

Устройство нового поколения

Именно таковым считается трёхфазный электросчётчик Меркурий 230, применяемый для фиксирования активной и реактивной электрической энергии в сетях с напряжением 380 В. Меркурий 230 характеризуется двумя телеметрическими выходами, защитой от взлома и классом точности варьирующейся в пределах 0,5-1 S. Напряжение резервного питания у Меркурия 230 составляет порядка 6-9 В. Имеются в наличии интерфейсы для обмена данными. Счётчик Меркурий 230 оснащён электронной пломбой и автоматической диагностикой, определяющей ошибки и неисправности.

Подключение электросчётчика Меркурия 230 возможно как прямым, так и трансформаторным способом. Благодаря таким возможностям устройство применимо практически при любых условиях эксплуатации.

Подключение трехфазного счетчика — ElectrikTop.ru

Для учета потребления электрической энергии на производственных площадках, а также так называемых общедомовых нужд, используются трехфазные электросчетчики. Их подключение и обслуживание производится по тем же правилам, которые существуют для однофазных приборов учета. Однако они работают с токами больших величин, поэтому существуют отличия в построении схемы подключения – она бывает прямой или через трансформаторы тока.

Общие принципы измерения количества электроэнергии

Электросчетчики определяют количество потребленной электрической мощности за единицу времени. За единицу измерения принят киловатт*час (кВт*ч). Чтобы получить необходимое значение, схему прибора строят из двух независимых цепей – тока и напряжения.

Устройство электромеханических (индукционных) счетчиков наиболее наглядно демонстрирует это. В них для каждой измеряемой фазы предусмотрено две катушки, расположенные в пространстве под углом в 900 друг к другу. Этот же принцип используется при формировании массива статорной обмотки однофазного электродвигателя.

Разница лишь в том, что по одной из них пропускается ток, а по другой – напряжение. Для этого первая включается последовательно измеряемой фазе, а другая – параллельно. Схема подключения однофазного счетчика электроэнергии приведена ниже.

В точке, где к фазной линии подключается катушка напряжения, в индукционных счетчиках расположен регулировочный винт, который пломбируется на заводе-изготовителе или представителями энергоснабжающих организаций. При его отсутствии или ослаблении в показания счетчика вкрадывается недопустимая погрешность.

В приборах с электронной схемой также существует две линии – тока и напряжения, но фазный сдвиг на 900 между ними формируется не пространственным расположением, а применением элементов электронной схемы – резисторов и конденсаторов. Так называемый винт напряжения отсутствует, соединение осуществляется пайкой, оно находится внутри корпуса, защищенного от вскрытия заводскими пломбами.

Отличие трехфазного от однофазного прибора учета лишь в количестве пар измерительных катушек, а также зажимов на клеммной колодке. При этом принцип подключения остается тем же: абстрагируясь от того, что ток переменный, направление движения электроэнергии считается односторонним – от поставщика к потребителю. Поэтому все клеммные зажимы приборов учета расположены слева направо. Так, чтобы их положение совпадало с порядком подключения проводов.

Почему существует два типа схем подключения

Измерительная пара является самым уязвимым местом в конструкции электрического счетчика. В меньшей степени это утверждение касается индукционных приборов, где катушки созданы из витков медного провода. И в большей – так называемых цифровых моделей, в которых подсчет протекающей электрической энергии осуществляется полупроводниковой микросхемой.

Если сравнивать технические характеристики разных моделей – как в пределах одного бренда, так и между ними, то бросается в глаза характерная деталь: везде номинальным током является значение 5 ампер. Однако это условие невозможно соблюсти, если суммарная мощность потребителей превышает 50 кВт. Поэтому существует два типа схем подключения трехфазных электросчетчиков.

  1. Прямая, использующаяся в сетях, токи нагрузки в которых не превышают 50 ампер.
  2. Через понижающие трансформаторы, которые уменьшают токи до значений, безопасных для прибора учета.

Что такое трансформаторы тока

Номинал напряжения в трехфазных сетях переменного тока всегда 380 вольт. Он не зависит от суммарной мощности потребления. Поэтому для защиты приборов учета в высоконагруженных сетях применяются трансформаторы тока.

Это электромеханические устройства, конструкция которых состоит из металлического сердечника и двух обмоток – первичной, с меньшим количеством витков медного провода, и вторичной, в которой число витков больше на фиксированное число раз. Это соотношение и определяет так называемый коэффициент трансформации – величину уменьшения выходного тока относительно входного.

Несмотря на принципиальное сходство, трансформаторы тока имеют существенные конструктивные отличия от трансформаторов напряжения. Во-первых, это всегда понижающее устройство. Во-вторых, первичная обмотка выполнена в виде металлической пластины – обычно плоской, толщиной не менее 3 мм и шириной от 2 до 5 сантиметров, поэтому попытка подключить входные клеммы между фазой и нейтралью вызовет короткое замыкание.

Замкнутый стальной магнитопровод имеет форму тора или квадрата, из-за чего корпус трансформатора тока бывает в форме бочонка или параллелепипеда. Выходные клеммы располагаются на одной из его боковых граней и имеют сечение в два-три раза меньшее, чем входные, находящиеся на торце.

На корпусе трансформаторов тока указывается соотношение максимального входного тока и его величина на выходе. Например, 100/5 или 150/5. В первом случае коэффициент трансформации равен двадцати, а во втором – тридцати. На это значение надо умножать показания электросчетчика, чтобы получить истинное значение количества потребленной электрической энергии.

На электрических схемах трансформаторы тока изображаются в виде короткой жирной линии и расположенного на или под ней мнемосимвола катушки индуктивности. Возле них пишут буквы ТТ. В отличие от трансформаторов напряжения, символ которых состоит из двух катушек и линии между ними, а также букв ТН.

Подключение трансформаторов тока

Схема подключения понижающего трансформатора тока представлена на рисунке ниже.

Он включается в разрыв измеряемой фазы – его первичная обмотка является ее конструктивным продолжением. Выходы вторичной обмотки замыкаются друг на друга через любой измерительный прибор. Например, амперметр.

Схема подключения трансформатора тока к счетчику представлена на рисунке ниже. В этом случае вторичная обмотка замкнута на токовую катушку счетчика электрической энергии.

Клеммная коробка трехфазного прибора учета, рассчитанного на подключение через трансформаторы тока, состоит из трех групп по три зажима в каждой и одной с двумя. При его подключении надо руководствоваться простым мнемоническим правилом, что движение происходит слева направо.

  • Клемма И1 вторичной катушки трансформатора тока подключается к зажиму 1.
  • От клеммы L1 – вход первичной обмотки трансформатора – тянется провод к зажиму 2.
  • Клемма И2 вторичной катушки трансформатора тока подключается к зажиму 3.

Остальные две фазы и трансформаторы тока коммутируются с прибором учета аналогичным образом к клеммам под номерами 4 – 9. К клеммам 10 и 11 присоединяется провод N (обратите внимание, что провод защитного сопротивления РЕ – это не одно и то же).

Допускается подключение провода от клеммы L1 к зажиму И1 трансформатора тока с целью экономии материала. Но в этом случае надо сделать перемычку между первым и вторым зажимом в группе на клеммной коробке счетчика электроэнергии.

При опечатывании счетчиков защищается от преднамеренного вскрытия не только их клеммная коробка, но и измерительные зажимы И1 И2, закрываемые колпачками на винте.

Нагрузка подключается к клеммам L2 трансформаторов. В результате получается, что через прибор учета пропущен лишь уменьшенный ток, что и отличает эту схему от прямого подключения, когда вся мощность пропускается через электросчетчик.

Влияние трансформаторов тока на точность измерений

Величина КПД современных трансформаторов тока не ниже 95 и не выше 98 процентов. Это близко к идеалу, но всё же может оказывать влияние на показания приборов, поскольку часть энергии рассеивается. Погрешность тем выше, чем больше суммарная мощность подключенных потребителей. Если она меньше 50 кВт, то не рекомендуется использование схемы подключения через трансформаторы тока.

Если вы используете схему подключения через трансформаторы тока, то при передаче показаний электросчетчика не забывайте умножать их на величину коэффициента трансформации.

Трансформаторы тока для измерения | Подсказка Energy Sentry Tech

Есть два типа электросчетчиков: автономные (с прямым приводом) и
трансформатор номинальный.

Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик. Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.

При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом.Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения тока или общей потребляемой мощности. Информация регистрируется счетчиком.

В ТТ кольцевого типа имеется два проводника или обмотки. Первичная обмотка — это линейный проводник, проходящий через центр трансформатора тока. Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.

Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается на измеритель, который прямо пропорционален первичному току.Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.

Для ТТ на 200: 5А коэффициент трансформации составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А коэффициент трансформации составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.

Номинальная нагрузка (B) — это полное сопротивление цепи, подключенной ко вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока.Рейтинг нагрузки — это максимальное значение импеданса перед превышением минимальных пределов точности.

Разница в коэффициенте тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент — это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.

Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?
У нас есть решение!

Измерительные трансформаторы тока высокого качества

Если ваша программа расчета теплового коэффициента требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.

Наши измерительные трансформаторы тока изготовлены из сердечников из многослойной кремнеземной стали высшего качества и соответствуют стандарту IEEE C57.13. стандарты.

Доступные передаточные числа Точность при BO.1 / 60 Гц Номинальный коэффициент Частота Класс изоляции
100: 5A 1,2 1,5 @ 30 ° C 50-400 Гц 600 В
200: 5A.03 1,5 @ 30 ° C 50-400 Гц 600 В

Следующий технический совет: трансформаторы тока для контроллеров нагрузки

CT Установка и подключение — Continental Control Systems, LLC

ПРЕДУПРЕЖДЕНИЕ ПО БЕЗОПАСНОСТИ! Трансформаторы тока (ТТ) обычно устанавливаются в электрооборудование со смертельно опасным высоким уровнем напряжения. Прежде чем пытаться установить трансформаторы тока, прочтите страницу безопасности при установке трансформаторов тока.

ВНИМАНИЕ! Счетчики WattNode предназначены для работы только с трансформаторами тока, имеющими 0.Выход 333 В переменного тока. Этот тип ТТ имеет встроенный нагрузочный резистор, который выдает безопасный выходной сигнал низкого напряжения. Использование трансформаторов тока любого другого типа приведет к неправильным измерениям мощности и может необратимо повредить измеритель WattNode.

  • В отличие от трансформаторов тока с передаточным отношением с токовыми выходами, эти трансформаторы тока имеют внутреннюю нагрузку для обеспечения безопасного выходного напряжения 0,333 В переменного тока, поэтому закорачивающие блоки не требуются.

Ключевые моменты

  • Установите трансформаторы тока на фазный провод, соответствующий фазе входного напряжения.
  • Установите трансформаторы тока так, чтобы стрелка или этикетка «Эта сторона по направлению к источнику» была обращена к выключателю, питающему нагрузку.
  • Подключите белый и черный выводы ТТ к соответствующим входным клеммам ТТ с белыми и черными точками.

Загрузить: Инструкция по установке и подключению ТТ (AN-130) (PDF, 3 страницы)

Открытие и закрытие CT

ТТ Accu-CT Series с разъемным сердечником открываются, сжимая рифленые панели, чтобы освободить защелку и потянуть / повернуть верхнюю часть.Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность. Оберните трансформатор тока вокруг проводника и поверните верхнюю часть обратно в закрытое положение, пока защелка не закроется. Закрепите проводник в нижней части U-образной секции ТТ, используя кабельную стяжку через окно ТТ и вокруг проводника.

ТТ с разъемным сердечником серии

CTML открываются, потянув за защелку. Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность.Оберните трансформатор тока вокруг проводника и сожмите его до тех пор, пока не услышите щелчок защелки.

Модели трансформаторов тока с разъемным сердечником

CTS Series и CTBL Series могут быть открыты для установки вокруг проводника или шины. Эти трансформаторы тока состоят из двух частей: С-образного корпуса и I-образного сечения, которое снимается для установки. Чтобы открыть ТТ с разъемным сердечником модели CTS, вытяните I-образную секцию прямо из C-образного корпуса. Чтобы открыть трансформатор тока шины модели CTBL, сначала удалите винты с накатанной головкой, которыми крепится I-образная секция.Требуется сильное усилие, особенно если ТТ новый.

Съемная секция подходит только для одной стороны, поэтому при ее снятии обратите внимание на то, как части стального сердечника подходят друг к другу. При закрытии ТТ обязательно совместите концы таким же образом. Если кажется, что ТТ заклинивает и не закрывается, возможно, детали стального сердечника выровнены неправильно. Не применяйте чрезмерную силу! Вместо этого переместите или покачайте съемную часть, пока ТТ не закроется без чрезмерного усилия.

После повторной сборки трансформатора тока с разъемным сердечником модели CTS можно закрепить нейлоновую кабельную стяжку по периметру трансформатора тока, чтобы предотвратить случайное открывание.На моделях шин CTBL установите на место нейлоновые винты и затяните их пальцами. Не используйте отвертку!

Обратите внимание, что С-образный корпус и съемная I-образная секция ТТ с открыванием калибруются как единое целое. Для большей точности эти детали не следует заменять местами с другими трансформаторами тока.

ТТ с твердым сердечником требует, чтобы измеряемый фазный провод был отключен на одном конце, чтобы его можно было пропустить через отверстие в ТТ. Это несложно, когда калибр провода небольшой, но становится непрактичным с проводами большего калибра и несколькими параллельными проводниками.

Фазовые проводники

Для правильных измерений трансформаторы тока должны быть установлены на фазном проводе, соответствующем подключению входа напряжения. Подключения входа напряжения находятся на пятипозиционной зеленой клеммной колодке с винтовыми зажимами. Например, трансформатор тока ØA должен быть установлен на том же фазовом проводе, который подключен к входу напряжения ØA. Аналогично, ØB CT устанавливается на той же фазе, что и вход ØB Voltage, а вход ØC CT устанавливается на входе ØC Voltage. Для идентификации проводов может помочь использование цветной ленты или этикеток.

Чтобы уменьшить магнитные помехи между трансформаторами тока на соседних фазах, рекомендуется разделять их примерно на 1 дюйм (25 мм). Это также помогает предотвратить образование перемычки между выводами фазных проводов или шин и пылью и мусором, что может вызвать пробой дуги.

Для обеспечения максимальной точности отверстие трансформатора тока не должно быть больше чем на 50% больше, чем фазовый провод. Если отверстие трансформатора тока намного больше, чем проводник, расположите проводник в центре отверстия трансформатора тока.Если это невозможно, попробуйте расположить проводник в нижней части U-образной половины трансформатора тока, подальше от конца отверстия, где происходит утечка магнитного потока.

Пластиковые кабельные стяжки могут использоваться для фиксации положения ТТ на фазном проводе. Кабельная стяжка также может быть закреплена по периметру некоторых моделей трансформаторов тока, чтобы предотвратить их случайное размыкание. Проводник находится вдали от открытого конца трансформатора тока.

См. Страницу выбора ТТ для получения дополнительной информации о выборе ТТ.

Ориентация и полярность

ТТ

помечены символом (стрелкой) или этикеткой, которые указывают на правильную механическую ориентацию ТТ на измеряемом проводе. Найдите на ТТ стрелку или метку «Эта сторона по направлению к источнику» и установите ТТ этикеткой или стрелкой в ​​сторону источника тока: обычно счетчика электросети или автоматического выключателя.

В дополнение к установке трансформаторов тока с правильной механической ориентацией, электрическая полярность, на что указывают их белый и черный провода, также должна быть правильной.Каждая пара проводов ТТ подключается к соответствующей клемме на черной шестипозиционной клеммной колодке с винтовыми зажимами. Клеммы обозначены ØA CT, ØB CT и ØC CT. Полярность каждой пары клемм обозначена белой и черной точкой на этикетке. Обязательно подключите белый провод к фазной клемме, совмещенной с белой точкой, а черный провод — к клемме с черной точкой.

Помните, что для правильной работы и физическая ориентация, и электрическая полярность каждой фазы должны быть правильными.Если фаза перевернута электрически или механически, и ток течет в обратном направлении, измеритель WattNode будет измерять, в зависимости от модели, нулевую или отрицательную энергию для этой фазы.

Провода отведения ТТ

Если подводящие провода ТТ длиннее, чем необходимо, их можно укоротить. Короткие подводящие провода ТТ помогают свести к минимуму электрические помехи. Если подводящие провода ТТ должны быть длиннее 8 футов, их можно удлинить. Как правило, лучше установить WattNode рядом с измеряемыми проводниками, а не удлинять провода трансформатора тока.

Однако можно удлинить провода трансформатора тока на 100 футов (30 м) или более, используя экранированный кабель витой пары. Чтобы свести к минимуму шум линии электропередачи от помех чувствительным сигналам трансформатора тока, удлинительные провода следует прокладывать в кабелепроводе (кабелепроводе) без каких-либо силовых проводов. Дополнительную информацию см. На странице «Удлинение провода трансформатора тока».

Диаметр выводных проводов витой пары ТТ составляет около 0,213 дюйма. Это примерно диаметр изолированного проводника №8 AWG THWN или THHN.Три витые пары подойдут для кабелепровода диаметром 1/2 дюйма, но если вы бежите на любое расстояние и имеете изгибы, кабельный канал диаметром 3/4 дюйма может быть лучшим выбором.

Выполнение подключений

Поскольку входы трансформатора тока датчика WattNode чувствительны к повреждению электростатическим разрядом (ESD), всегда заземляйте себя на мгновение, прикоснувшись к электрическому корпусу или другому заземленному металлическому объекту, прежде чем прикасаться к датчику. Это хорошая практика для всего электронного оборудования, чувствительного к электростатическому разряду.

Для подключения выводных проводов ТТ к входным клеммам ТТ сначала снимите примерно 6 мм изоляции с конца одного из проводов, скрутите оголенные жилы вместе, вставьте конец в клеммную колодку и надежно затяните винт. Подключить провода к клеммной колодке будет проще, если сначала вставить колодку в счетчик.

Неиспользуемые входы ТТ могут вызвать электрические помехи, поэтому рекомендуется закоротить неиспользуемые входные клеммы ТТ, подключив проволочную перемычку длиной около 1 дюйма между белой и черной клеммами ТТ.Обычно это не вызывает беспокойства, если к соответствующей входной клемме напряжения не подключено сетевое напряжение.

См. Также


Ключевые слова: ТТ, трансформатор тока, установка, электромонтаж, подключение

Разница между трансформатором тока (CT) и трансформатором потенциала (PT)

Электрические инструменты не подключаются напрямую к счетчикам или контрольным приборам высокого напряжения в целях безопасности. Измерительные трансформаторы, такие как трансформатор напряжения и трансформатор тока, используются для подключения электрических приборов к измерительным приборам.Эти трансформаторы снижают напряжение и ток от высокого значения до низкого значения, которое можно измерить обычными приборами.

Конструкция трансформатора тока и напряжения аналогична, поскольку оба имеют магнитную цепь в первичной и вторичной обмотках. Но они разные по способу работы. Существует несколько типов различий между трансформатором напряжения и трансформатором тока.

Одно из основных различий между ними состоит в том, что трансформатор тока преобразует высокое значение тока в низкое значение, тогда как трансформатор напряжения или напряжения преобразует высокое значение напряжения в низкое напряжение.Некоторые другие различия между трансформатором тока и трансформатором напряжения поясняются ниже в сравнительной таблице.

Содержание: Трансформатор тока против потенциала

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Запомните

Сравнительная таблица

Основа для сравнения Трансформатор тока Трансформатор потенциала
Определение Преобразуйте ток от высокого значения к низкому значению. Преобразование напряжения с высокого значения на низкое.
Обозначение цепи
Сердечник Обычно состоит из слоистой кремнистой стали. Изготовлен из высококачественной стали, работающей при низкой плотности потока.
Первичная обмотка Переносит измеряемый ток Переносит измеряемое напряжение.
Вторичная обмотка Подключается к токовой обмотке прибора. Он подключен к счетчику или прибору.
Подключение Подключено последовательно с прибором Подключено параллельно с прибором.
Первичный контур Имеет малое количество витков Имеет большое количество витков
Вторичная цепь Имеет большое количество витков и не может быть разомкнутой цепи. Имеет малое количество витков и может быть обрывом.
Диапазон 5A или 1A 110 В
Коэффициент трансформации Высокий Низкий
Нагрузка Не зависит от вторичной нагрузки Зависит от вторичной нагрузки
Вход Постоянный ток Постоянное напряжение
Полный линейный ток Первичная обмотка состоит из полного линейного тока. Первичная обмотка состоит из полного линейного напряжения.
Типы Два типа (намотанный и закрытый сердечник) Два типа (электромагнитное и конденсаторное напряжение)
Импеданс Низкий Высокий
Приложения Измерение тока и мощности, контроль работы электросети, для срабатывания защитного реле, Измерение, источник питания, срабатывание защитного реле,

Определение трансформатора тока

Трансформатор тока — это устройство, которое используется для преобразования тока с более высоким значением в более низкое значение по отношению к потенциалу земли.Он используется с приборами переменного тока для измерения высокого значения тока.

Линейный ток слишком велик, и его очень сложно измерить напрямую. Таким образом, используется трансформатор тока, который уменьшает высокое значение тока до дробного значения, которое легко измерить прибором.

Первичная обмотка трансформатора тока подключается непосредственно к линии, значение которой необходимо измерить. Вторичная обмотка трансформатора тока подключается к амперметру или измерителю, который измеряет линейное значение в долях.

Определение трансформатора потенциала

Трансформатор напряжения — это тип измерительного трансформатора, который используется для преобразования напряжения от более высокого значения к более низкому значению.

Первичная клемма трансформатора напряжения подключена к линии измерения линейного напряжения. Трансформатор напряжения снизил высокое значение напряжения до небольшого значения, которое можно легко измерить с помощью вольтметра или измерителя.

Основные различия между трансформаторами тока и потенциала

  1. Трансформатор тока преобразует высокое значение тока в низкое значение, чтобы его можно было удобно измерить прибором, тогда как трансформатор напряжения преобразует высокое значение напряжения в низкое значение.
  2. Первичная обмотка трансформатора тока подключена последовательно с линией передачи, ток которой должен измеряться, а трансформатор напряжения подключен параллельно с линией.
  3. Сердечник трансформатора тока состоит из пластин из нержавеющей стали. Сердечник трансформатора напряжения состоит из высокопроизводительного сердечника, работающего при низких плотностях магнитного потока.
  4. Первичная обмотка трансформатора тока несет измеряемый ток, а первичная обмотка трансформатора напряжения несет напряжение.
  5. Первичная обмотка трансформаторов тока имеет небольшое количество витков, тогда как в трансформаторе напряжения первичная обмотка имеет большое количество витков.
  6. Вторичная обмотка трансформатора тока имеет большое количество витков, и ее нельзя замкнуть, когда она находится в рабочем состоянии. Вторичная обмотка трансформатора напряжения имеет небольшое количество витков, и во время обслуживания она может быть разомкнута.
  7. Нормальный диапазон трансформатора тока для измерения тока составляет 5 А или 1 А, тогда как стандартное напряжение на вторичной обмотке трансформатора напряжения составляет до 110 В.
  8. Коэффициент трансформации трансформатора тока всегда остается высоким, тогда как для трансформатора напряжения он остается низким.
    • Примечание. Коэффициент трансформации трансформатора тока и напряжения определяется как отношение номинального первичного напряжения к номинальному вторичному напряжению.
  9. Вход трансформатора тока — постоянный ток, а вход трансформатора напряжения — постоянное напряжение.
  10. Первичная обмотка трансформатора тока не зависит от нагрузки вторичной обмотки трансформатора; это зависит от тока, протекающего в первичных обмотках, тогда как первичная обмотка трансформатора напряжения зависит от нагрузки вторичной обмотки.
    • Примечание: Нагрузка — это вторичная нагрузка трансформатора.
  11. Первичная обмотка трансформатора тока напрямую подключена к полному линейному току, ток которого должен быть измерен, тогда как в трансформаторе напряжения полное линейное напряжение напрямую подключается к первичной клемме.
  12. Полное сопротивление первичной обмотки трансформатора очень низкое по сравнению с вторичной обмоткой, тогда как в трансформаторе напряжения полное сопротивление первичной обмотки велико.
    • Примечание. Импеданс — это противодействие току, протекающему в цепи, когда на них подается напряжение.
  13. Трансформатор тока в основном используется для измерения такой величины тока, что измеритель или прибор не может удобно измерить, тогда как трансформатор напряжения используется для измерения высокого напряжения тока.

Следует помнить: трансформатор тока в основном используется для схемы релейной защиты, поскольку он снижает большую величину первичного тока до значения, подходящего для работы реле.Трансформатор тока также обеспечивает изоляцию от высокого напряжения силовой цепи и, следовательно, защищает оборудование и персонал от высокого напряжения.

CT и PT — Изучение измерений

CT, или трансформаторы тока, и PT, или трансформаторы напряжения используются в измерениях для понижения тока и напряжения до более безопасных и более управляемых уровней. Многие хотят знать, что такое трансформатор тока и трансформатор напряжения. Здесь я попытаюсь развенчать заблуждение о CT PT.Еще я хочу отметить, что счетчики с номинальным током трансформатора тока используются не только как вторичный счетчик электроэнергии, но и как первичный счетчик электроэнергии. Счетчики с рейтингом CT также обычно являются счетчиками потребления.

Когда трансформаторы тока и трансформаторы используются в измерительной установке, такая установка считается трансформаторной. Некоторые люди называют измерители, в которых используется комбинация ТТ, ПТ или просто ТТ, измерителем с трансформатором тока. Услуги, рассчитанные на трансформатор, работают параллельно с услугой.Это означает, что, в отличие от автономных услуг, питание потребителя не прерывается при снятии счетчика. Причина, по которой они необходимы, заключается в том, что ток и / или напряжение измеряемой услуги слишком высоки. Это также зависит от политики и процедур утилиты. Например, некоторые коммунальные предприятия требуют, чтобы трансформатор был рассчитан на напряжение более 480 В. Пока других утилит нет.

Щелкните здесь, чтобы ознакомиться с руководством по энергоэффективности.

Кроме того, некоторые коммунальные службы вообще не используют СТ для обслуживания 480 Вольт.Я рекомендую отказаться от этой практики из соображений безопасности техников счетчиков или линейного мастера, которым может потребоваться установка или снятие этих счетчиков с эксплуатации. Прочтите, почему вам следует использовать PT.

Итак, что делают CT? Как указывалось ранее, они служат для понижения высокого тока до безопасного управляемого уровня. Трансформаторы тока коммерческого класса спроектированы так, чтобы вырабатывать 5 ампер при номинальном значении усилителей на сервисе. Например, типичная установка в сети 120/208 на 400 А содержит 200: 5 ТТ. Когда через первичную обмотку трансформатора тока проходит 200 ампер, через клеммы вторичной обмотки выходит 5 ампер.

CT имеют паспортные таблички и номиналы, как и любое другое электрическое оборудование. Наиболее важные моменты, которые следует отметить на паспортной табличке, — это коэффициент и номинальный коэффициент. Соотношение сторон будет напечатано большими буквами на боковой стороне CT. Типичные соотношения: 200: 5, 400: 5, 600: 5, 800: 5 и так далее. Опять же, это означает, что, когда указанное значение тока проходит через первичную сторону трансформатора тока, 5 ампер проходят через вторичную сторону.

Коэффициент мощности используется при определении ТТ размера, используемого в конкретной установке.Некоторые CT имеют рейтинг 4, 3, 2 или 1,5. Это означает, что производитель заявляет, что точность ТТ превышает значения, указанные на паспортной табличке. Например, ТТ 200: 5 с номинальным коэффициентом 4 будет точно измерять мощность до 800 ампер. Таким образом, если бы эта конкретная служба была бы на 800 ампер, на вторичной стороне трансформатора тока и на базе счетчика выходило бы 20 ампер. Это важно, потому что мы хотим, чтобы наши трансформаторы тока были полностью насыщенными. Это означает, что мы хотим, чтобы ТТ 200: 5 имел такой размер, чтобы токи, протекающие через первичную обмотку, имели как можно ближе к 200 ампер.Когда сердечник ТТ полностью насыщен, он является наиболее точным. CT имеют тенденцию терять часть своей точности при более низких уровнях усилителя.

Большинство трансформаторных счетчиков сегодня — это счетчики класса 20. Это означает, что катушки тока внутри счетчика рассчитаны на постоянный ток 20 ампер. Вы не хотите перегрузить измеритель, поместив более 20 ампер в основание измерителя, потому что вы неправильно рассчитали трансформатор тока. Например, вы не захотите вводить в эксплуатацию трансформаторы тока 200: 5, которые, как вы знаете, будут потреблять 1000 ампер на первичной стороне.Это приведет к тому, что в основании счетчика будет 25 ампер, превышающих номинальную мощность счетчика. Это приводит к потере дохода.

Чтобы правильно рассчитать ТТ, важно знать, какой будет фактическая подключенная нагрузка. Лучший способ сделать это — проконсультироваться с инженером. Если трансформаторы тока должны быть размещены в трансформаторе, устанавливаемом на подставке или на столбе, и от этих трансформаторов требуется только одна услуга, лучше всего подбирать трансформаторы тока таким образом, чтобы они выдерживали максимальный ток, на который рассчитан трансформатор. Это делает две вещи: во-первых, это гарантирует, что ваш трансформатор тока никогда не будет перегружен, и, во-вторых, это способ найти перегруженные трансформаторы.

Еще одна вещь, которую хотят знать многие, — это расчет размеров трансформатора тока. Я знаю, что я сказал ранее, что вам следует проконсультироваться с инженером, и вам следует это сделать, но формула, которую мы используем для определения размеров трансформатора тока для однофазного трансформатора, следующая:

кВА x 1000

линейное напряжение

Теперь, чтобы Чтобы найти трансформатор тока правильного размера для трехфазной сети, мы воспользуемся этим расчетом размеров трансформатора тока.

кВА x 1000

линейное напряжение x √3

Фактически это формула для определения максимальной допустимой нагрузки трансформаторов.Имея эту информацию, мы можем рассчитать трансформаторы тока на основе предоставленной информации.

Довольно о CT, давайте поговорим о PT. PT — это трансформаторы потенциала. Их также называют трансформаторами напряжения или трансформаторами напряжения. Они используются для понижения напряжения до безопасного уровня, чтобы его можно было измерить. ПТ обычно используются в любой установке, где напряжение в сети составляет 480 В или выше. Некоторые типичные СТ составляют 2,4: 1 и 4: 1.

Теперь, когда мы знаем, что такое CT и PT, мы можем поговорить о множителях счетчиков.Множители счетчиков используются, когда счетчики устанавливаются в трансформаторных установках. Если соотношение CT составляет 200: 5, то множитель измерителя равен 40, что составляет просто 200/5. Если у услуги есть и CT, и PT, то эти два значения умножаются, чтобы получить множитель биллинга. Например, если услуга имеет ТТ 200: 5 и ТТ 2,4: 1, множитель будет 96. Это потому, что 40 x 2,4 = 96.

Мы также много знаем о ТТ и измерителях из-за теоремы Блонделя. Перейдите по ссылке, чтобы узнать больше об этой теореме.

Трансформаторы тока (ТТ), подключенные последовательно для двух счетчиков или реле

Подключение реле защиты и счетчика кВтч к одному и тому же набору трехфазных трансформаторов тока возможно в соответствии с типовой схемой ниже (щелкните, чтобы увеличить)

Обратите внимание, что используется полярность: «P2 — к защищаемому объекту, S2 ​​- заземлен» — стандарты вашей компании могут отличаться.

Если ТТ используется как для защиты, так и для измерения, ТТ должен быть рассчитан на оба. Большинство производителей КТ должны быть в состоянии удовлетворить этот запрос.

В Австралии, где мы указываем ТТ в соответствии с IEC / AS 60044.1, типичные классы ТТ будут 10P20 2,5 ВА для защиты и класс 0,5 М 2,5 ВА для измерения. Таким образом, комбинированный класс ТТ будет «10P20 & 0,5M 2,5 ВА».

Вы по-прежнему можете подключить счетчик кВтч к трансформатору тока с классом защиты (без класса измерения), однако точность счетчика кВтч не гарантируется.

Не подключайте реле защиты к измерительным трансформаторам тока, поскольку измерительные трансформаторы тока преднамеренно предназначены для насыщения во время аварийных состояний — это не то, что вам нужно для схемы реле защиты, которая пытается измерять эти токи замыкания!

Измерительное оборудование, подключенное к ТТ защиты, должно выдерживать ток, протекающий во время короткого замыкания в первичной цепи.Например, если коэффициент трансформации ТТ составляет 800 / 5A, а предполагаемый уровень неисправности составляет 25 кА, вторичный ток может достигать 25000 / [800 / 5A] = 156 A во вторичной цепи.

Для устранения этой ошибки может потребоваться до 2 секунд, в зависимости от настроек защиты на входе. Типичный счетчик киловатт-часов способен выдерживать только 400 А в течение 0,5 цикла (10 мс), что эквивалентно 28 А в течение 2 секунд. Вторичный ток 156 А в течение 2 секунд приведет к необратимому повреждению счетчика кВтч.

Типичное решение — обеспечить класс измерений с коэффициентом 1 / 1A «промежуточным трансформатором тока» во вторичной цепи, который ограничит максимальный ток в цепи счетчика кВтч.Промежуточные CT — это готовый продукт, доступный у всех обычных поставщиков.

Также обратите внимание, что ТТ класса 10P20 2,5 ВА будет насыщаться при номинальном 20-кратном номинальном токе только в том случае, если ТТ нагружен до номинальной нагрузки, то есть 2,5 ВА. Типичная нагрузка для современных реле защиты и счетчиков цифрового типа составляет всего 0,2 ВА. Таким образом, ток, протекающий во вторичной цепи, может быть намного выше, чем вы ожидаете из технических характеристик трансформатора тока. В случае сомнений используйте промежуточный ТТ.

Физическая схема подключения трансформатора тока — Knowledge

Трансформатор тока подключается к амперметру и способу подключения вольтметра.

Во-первых, физическая схема подключения выглядит следующим образом:

Описание сопутствующего продукта: трансформатор тока 3, только амперметр 3, три световых индикатора, один вольтметр, один универсальный переключатель LW2.

Основной метод подключения такой же, как указано выше, с некоторыми соответствующими инструкциями:

2 5 7 подключено к источнику питания, 3, 6 подключено к вольтметру

Линия фаз A, B, C, A подключена к 5, B подключен к 7, а C подключен к 2. Проводка, показанная на карте знаний, в общем, любое соединение. Поворотный переключатель преобразован в измеритель напряжения для отображения значений напряжения соответствующих двух фаз.

Обычно используемые трансформаторы имеют сквозные трансформаторы, изнашиваемые трансформаторы и трансформаторы для проводки. Трансформаторы здесь используются в системе низкого напряжения AC380V. У датчиков тока, независимо от типа трансформатора, принцип один и тот же.

Конструкция трансформатора тока состоит из первичной обмотки, вторичной обмотки, сердечника и рамы, корпуса, клеммы проводки и т.п., изолированных друг от друга. Принцип работы в основном такой же, как и у трансформатора.Число витков (N1) первичной обмотки меньше, и она последовательно включается непосредственно в линию питания. Когда ток первичной нагрузки проходит через первичную обмотку, создается переменный магнитный поток. Вторичный ток с пониженным коэффициентом; количество витков вторичной обмотки (N2) велико, а вторичная нагрузка токовой катушки, такая как прибор, реле и передатчик (Z), образуют последовательно замкнутый контур, см. рисунок 1.

Электромонтаж трансформатора относительно прост и понятен.Поскольку у этих трансформаторов один и тот же принцип, все они имеют одно и то же место. Например, есть две вторичные клеммы S1 и S2 для вывода. Текущий сигнал подается на амперметр, а также есть метка P1, указывающая текущее направление нарезания резьбы или проводки. Кроме того, характеристики амперметра аналогичны, например, AC100 / 5A, AC500 / 5A, AC2000 / 5A и т. Д. Эти трансформаторы тока имеют стандартный выходной сигнал 0-5A, но он используется при большом токе. и ток небольшой.

Схема подключения трансформатора тока:

Первичный ток трансформатора тока поступает с клеммы P1 и выходит с клеммы P2; то есть клемма P1 подключается к стороне источника питания, а клемма P2 подключается к стороне нагрузки.

Вторичный ток трансформатора тока вытекает из S1 и поступает на положительный вывод амперметра. После выхода отрицательной клеммы амперметра она течет во вторичную клемму S2 трансформатора тока.В принципе, требуется клемма S2. Заземление.

Примечание: Некоторые трансформаторы тока имеют однократное номинальное значение, L1, L2, номинальное значение вторичной стороны K1, K2

Блок-схема, схема подключения:

Вышеупомянутые трансформаторы обычно относятся к 0,5. с ним есть однофазный амперметр, трехфазный амперметр или многофункциональный измеритель, счетчик и т. п. Внешний вид трансформаторов от разных производителей может быть разным, модели тоже разные, а резьба и ношение разные.Это нужно четко понимать при покупке.

Понимание соотношения, полярности и класса

Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока. Фото: Викимедиа.

Основная функция трансформатора тока — обеспечивать управляемый уровень напряжения и тока, пропорциональный току, протекающему через его первичную обмотку, для работы измерительных или защитных устройств.

В своей основной форме трансформатор тока состоит из многослойного стального сердечника, вторичной обмотки вокруг сердечника и изоляционного материала, окружающего обмотки.

Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока.

Если этот ток проходит через первичную обмотку трансформатора тока, внутренний железный сердечник намагничивается, что вызывает напряжение во вторичных обмотках.Если вторичная цепь замкнута, через вторичную обмотку будет протекать ток, пропорциональный коэффициенту трансформатора тока.

ТТ разомкнутой цепи

ОПАСНО: Трансформаторы тока должны оставаться закороченными до тех пор, пока не будут подключены к вторичной цепи. Трансформаторы тока обычно подключаются к клеммной колодке, где можно установить закорачивающие винты, чтобы связать изолированные точки вместе.

Важно, чтобы к трансформатору тока всегда была подключена нагрузка или нагрузка, когда он не используется, в противном случае на клеммах вторичной обмотки может возникнуть опасно высокое вторичное напряжение.


Типы трансформаторов тока

Существует четыре типичных типа трансформаторов тока: оконные, проходные, стержневые и намотанные. Первичная обмотка может состоять просто из первичного проводника тока, проходящего один раз через отверстие в сердечнике трансформатора тока (оконного или стержневого типа), или она может состоять из двух или более витков, намотанных на сердечник вместе с вторичной обмоткой (намотанной тип).

Оконные и линейные трансформаторы тока

являются наиболее распространенными трансформаторами тока, встречающимися в полевых условиях.Фото: ABB

1. Окно CT

Оконные трансформаторы тока

не имеют первичной обмотки и могут иметь конструкцию со сплошным или разъемным сердечником. Эти трансформаторы тока устанавливаются вокруг проводника и являются наиболее распространенным типом трансформаторов тока в полевых условиях.

При установке оконных трансформаторов тока со сплошной сердцевиной необходимо отключить первичный провод. Трансформаторные трансформаторы тока с разделенным сердечником и окном могут быть установлены без предварительного отключения первичного проводника и обычно используются в приложениях для мониторинга и измерения мощности.

ТТ нулевой последовательности — это тип оконного ТТ, который обычно используется для обнаружения замыкания на землю в цепи путем суммирования тока по всем проводникам одновременно. В нормальном режиме работы эти токи будут векторно равны нулю.

Оконный трансформатор тока нулевой последовательности

Когда происходит замыкание на землю, поскольку часть тока идет на землю и не возвращается на другие фазы или нейтраль, трансформатор тока обнаруживает этот дисбаланс и отправляет сигнал вторичного тока на реле.ТТ нулевой последовательности устраняют необходимость в использовании ТТ с несколькими окнами, выходы которых суммируются, за счет использования одного ТТ, окружающего все проводники.

2. Стержневой CT

Трансформаторы тока типа

работают по тому же принципу, что и оконные трансформаторы тока, но имеют постоянную шину, установленную в качестве первичного проводника. Доступны типы стержней с более высоким уровнем изоляции и обычно привинчиваются непосредственно к текущему устройству ухода.

Трансформатор тока стержневого типа

3.Втулка CT

Трансформаторы тока проходного изоляционного типа

в основном представляют собой оконные трансформаторы тока, специально разработанные для установки вокруг высоковольтного ввода. Обычно к этим трансформаторам тока нет прямого доступа, и их паспортные таблички находятся на шкафу управления трансформатором или выключателем.

SF6 вводов ТТ 110 кВ. Фото: Викимедиа

4. Рана КТ

Трансформаторы тока с обмоткой имеют первичную и вторичную обмотку, как и обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформаторов тока для компенсации малых токов, согласования различных коэффициентов передачи трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока.

Трансформаторы тока этого типа имеют очень высокую нагрузку, поэтому при использовании трансформаторов тока с обмоткой следует уделять особое внимание нагрузке ТТ источника.


Класс напряжения ТТ

Класс напряжения ТТ определяет максимальное напряжение, с которым ТТ может контактировать напрямую. Например, оконный трансформатор тока 600 В не может быть установлен на оголенном проводе 2400 В или вокруг него, однако оконный трансформатор тока на 600 В может быть установлен вокруг кабеля 2400 В, если трансформатор тока установлен вокруг изолированной части кабеля и изоляция рассчитана правильно.


Коэффициент ТТ

Коэффициент CT — это отношение первичного входного тока к вторичному выходному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить вторичный ток 5 ампер, когда через первичную обмотку протекает 300 ампер.

Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если через первичную обмотку номиналом 300 А протекает 150 А, вторичный ток будет равен 2.5 ампер.

Коэффициент передачи трансформатора тока эквивалентен коэффициенту напряжения трансформаторов напряжения. Фото: TestGuy.

В прошлом для измерения тока обычно использовались два основных значения вторичного тока. В Соединенных Штатах инженеры обычно используют выход на 5 ампер. В других странах используется выход на 1 ампер.

С появлением микропроцессорных счетчиков и реле в промышленности наблюдается замена вторичной обмотки на 5 или 1 ампер на вторичную обмотку мА.Обычно устройства с мА-выходом называются «датчиками тока», в отличие от трансформаторов тока.

Примечание. Коэффициенты ТТ выражают номинальный ток ТТ, а не просто отношение первичного тока к вторичному. Например, ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5.


CT Полярность

Полярность трансформатора тока определяется направлением, в котором катушки намотаны вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки), и тем, каким образом вторичные выводы выводятся из корпуса трансформатора.

Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:

  • h2 — Первичный ток, направление линии
  • h3 — Первичный ток, направление нагрузки
  • X1 — вторичный ток (многоскоростные трансформаторы тока имеют дополнительные вторичные клеммы)

ТТ с разъемным сердечником, рассчитанный на 200 А. Обратите внимание на маркировку полярности в центре сердечника, указывающую направление источника.Фото: Continental Control Systems, LLC

В трансформаторах с вычитающей полярностью первичный вывод h2 и вторичный вывод X1 находятся на одной стороне трансформатора. Полярность ТТ иногда указывается стрелкой, эти ТТ следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.

Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.

Условные обозначения на чертежах полярности CT

Обозначение полярности на электрических чертежах и схемах трансформаторов тока может быть выполнено несколькими различными способами.Три наиболее распространенных условных обозначения схем — это точки, квадраты и косые черты. Маркировка полярности на электрических чертежах обозначает угол h2, который должен быть обращен к источнику.

Как проверить полярность ТТ

Маркировка трансформаторов тока иногда неправильно наносилась на заводе. Вы можете проверить полярность ТТ в полевых условиях с батареей 9 В, используя следующую процедуру тестирования:

  1. Отключите все питание перед проверкой и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ.Положительная клемма измерителя подключена к клемме X1 трансформатора тока, а отрицательная клемма — к X2.
  2. Пропустите кусок провода через верхнюю сторону окна трансформатора тока и на мгновение коснитесь положительного конца 9-вольтовой батареи на стороне h2 (иногда отмеченной точкой) и отрицательного конца к стороне h3. Важно избегать постоянного контакта, который может привести к короткому замыканию аккумулятора.
  3. Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении.Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо переключить, и можно провести тест.

Маркировка трансформаторов тока иногда неправильно наносилась на заводе. Вы можете проверить полярность ТТ в полевых условиях, используя 9-вольтовую батарею.

Связано: объяснение 6 электрических испытаний трансформаторов тока


CT Класс точности

Поскольку идеальных трансформаторов не существует, возникают небольшие потери энергии, такие как вихревые токи и тепло, вызванное током, протекающим через обмотки.Вторичный ток, который возникает в этих ситуациях, не полностью воспроизводит форму волны тока в энергосистеме.

Степень, в которой величина вторичного тока отличается от расчетного значения, ожидаемого в силу соотношения ТТ, определяется классом точности ТТ. Чем больше число, используемое для определения класса, тем больше допустимое отклонение вторичного тока от расчетного значения (погрешность).

За исключением классов с наименьшей точностью, класс точности ТТ также определяет допустимое смещение фазового угла между первичным и вторичным токами.В зависимости от класса точности трансформаторы тока делятся на точность измерения или точность защиты (реле). CT может иметь рейтинги для обеих групп.

Точность измерения ТТ

Точность измерения

ТТ рассчитаны на указанные стандартные нагрузки и спроектированы так, чтобы обеспечивать высокую точность от очень низкого тока до максимального номинального тока ТТ. Из-за своей высокой точности эти трансформаторы тока обычно используются коммунальными предприятиями для выставления счетов.

ТТ точности реле

Точность реле

не так точна, как ТТ точности измерения. Они разработаны для работы с разумной степенью точности в более широком диапазоне токов. Эти трансформаторы тока обычно используются для подачи тока на реле защиты. Более широкий диапазон значений тока позволяет защитному реле работать при различных уровнях неисправности.

Вы можете узнать класс точности ТТ, посмотрев на его паспортную табличку или этикетку производителя. Класс точности CT состоит из комбинации цифр и букв, как указано в ANSI C57.13 и разбит на три части:

  1. номинальное соотношение рейтинг точность
  2. рейтинг класса
  3. максимальная нагрузка

Класс точности ТТ состоит из комбинации цифр и букв, как указано в ANSI C57.13

.

1. Номинальное соотношение Рейтинг точности

Это число является просто номинальным коэффициентом точности, выраженным в процентах. Например, трансформатор тока с классом точности 0,3B0.1 сертифицирован производителем как точность с точностью до 0.3 процента от номинального значения коэффициента для первичного тока 100 процентов от номинального коэффициента.

2. Рейтинг класса

Вторая часть класса точности ТТ — это буква, обозначающая приложение, для которого рассчитан ТТ. Трансформатор тока может иметь двойные номиналы и использоваться для измерения или защиты, если оба номинала указаны на паспортной табличке.

  • C — Указывает, что ТТ имеет низкий поток утечки, что означает, что точность может быть рассчитана до производства
  • T — Указывает, что ТТ может иметь значительный поток утечки, и точность должна определяться на заводе.
  • H — Указывает, что точность ТТ применима во всем диапазоне вторичных токов от пяти до 20-кратного номинального значения ТТ. Обычно это трансформаторы тока с обмоткой.
  • L — Указывает, что точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20-кратном номинальном значении. Точность коэффициента может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока короткого замыкания. Обычно это оконные, проходные или стержневые трансформаторы тока.

3.Максимальная нагрузка

Третья часть класса точности ТТ — это максимальная нагрузка, разрешенная для ТТ. Как и все трансформаторы, трансформатор тока может преобразовывать только конечное количество энергии. Ограничение энергии ТТ называется максимальной нагрузкой. Если этот предел превышен, точность ТТ не гарантируется.

Для ТТ измерительного класса нагрузка выражается в омах, импедансе. Например, коэффициент трансформатора тока номиналом 0,3B0,1 имеет точность 0,3 процента, если полное сопротивление подключенной вторичной нагрузки не превышает 0.1 Ом. ТТ класса измерения 0,6B8 будет работать с точностью 0,6%, если вторичная нагрузка не превышает 8,0 Ом.

Нагрузка трансформатора тока класса реле выражается в вольт-амперах и отображается как максимально допустимое вторичное напряжение, если через вторичный контур протекает 20-кратное номинальное значение трансформатора тока (100 А для вторичного трансформатора тока 5 А).