Сечение провода и мощность таблица пуэ: Мощность кабеля по сечению таблица пуэ, провод по току

Выбор сечения кабеля по току

Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.

При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.

Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.

Таблицы ПУЭ и ГОСТ

Плотность тока

При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.

В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.

Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.

Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.

К таковым можно отнести следующее:

  1. Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
  2. Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
  3. Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.

К самому главному недостатку такого кабеля можно отнести более высокую цену на него.

Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.

Проведение расчетов сечения по току

При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.

В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.

Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.

I=(P*K1)/U

В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.

Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.

Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.

Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.

Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.

Расчет по току с применением дополнительных параметров

При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.

Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.

Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.

Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.

Как правильно пользоваться таблицами ПУЭ 1.3.4. и 1.3.5 во время выбора сечения кабеля

Таблицы из ПУЭ 1.3.4 и 1.3.5 знакомы уже многим и разжеваны сотни раз на разных форумах профессиональными электриками. В эту дискуссию хочу внести свою лепту и я. Ниже я описываю свое мнение как нужно правильно пользоваться данными таблицами. Там вы найдете ссылки и выдержки на соответствующие пункты ПУЭ, мои расчеты и примеры. Если вы еще не знаете как правильно выбирать сечение кабеля и как пользоваться этими таблицами, то вам нужно обязательно прочитать эту статью.

Вот они эти заветные таблицы ПУЭ.

Таблица 1.3.4. предназначена для выбора проводов с медными жилами.

Таблица 1.3.5. предназначена для выбора проводов с алюминиевыми жилами.

Посмотрели их внимательно? Теперь давайте подумаем, почему для кабеля одного и того же сечения допустимый длительный ток может быть разным. Например, для сечения 2,5мм2 он может быть 21А, 25А, 27А или 30А. Видите какой разброс, аж в целых 7 ампер. Из этих таблиц мы видим, что величина длительного номинального тока зависит от способа прокладки проводов. Но какая может быть разница от того если мы кабель заштукатурили в стену, проложили в кабель-канале или в землю закопали? Сопротивление же этого кабеля не может измениться от его способа прокладки. Сопротивление это параметр, который может повлиять на величину номинального тока. Когда мы увеличиваем сечение кабеля мы тупо уменьшаем его сопротивление, поэтому по более толстому проводу может протекать более высокий ток.

Итак, давайте во всем этом мы с вами вместе разберемся. Для этого открываем ПУЭ и смотрим пункт 1.3.2. Тут сказано, что все провода должны удовлетворять только требованиям предельно допустимого нагрева. Это означает, что ограничения по току выбираются исходя из нагрева токопроводящих жил, то есть при выборе сечения нам нужно исключить только перегрев кабелей.

Оказывается, что от способа прокладки кабеля зависит его естественное охлаждение. Если мы прокладываем провод открыто, то он лучше охлаждается, чем если мы его проложим в кабель-канале. Если мы кабель закопаем в землю, то он еще лучше будет охлаждаться и соответственно меньше греться, поэтому по нему допускается протекание более высокого длительного номинального тока.

Листаем ПУЭ дальше и смотрим пункт 1.3.10. Тут сказано, что все номинальные токи, указанные в таблице, рассчитаны исходя из температуры жил +65С0, окружающего воздуха +25С0 и земли +15С0. Таким образом получается, если на улице теплая погода +25С0, а мы проложили кабель сечением 2,5мм2 открыто и по нему протекает ток величиной 30А, то температура его жил должна быть +65С0. Вы представляете себе эту температуру? Ее даже не сможет выдержать ваша рука. Конечно для изоляции может эта температура и нормальная, но признаюсь честно, что я не хочу чтобы у меня дома жилы кабелей имели температуру +65С0.

Делаем вывод что, если кабель имеет хорошее охлаждение, то для того чтобы его жилу нагреть до критической температуры необходимо, чтобы по нему протекал больший ток. Поэтому в таблицах ПУЭ 1.3.4 и 1.3.5 присутствует разброс по величине номинального тока в зависимости от способа прокладки, т.е. от условий его охлаждения.

Теперь давайте разберем, что означает в столбцах таблиц прокладка кабеля в одной трубе и т.д. В том же пункте ПУЭ 1.3.10. написана следующая фраза:.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Я ее понимаю так, что при подсчете количества проводов при использовании многожильных кабелей, нулевые защитные проводники в расчет не принимаются. Также если сеть 3-х фазная, то здесь еще не принимается в расчет нулевой рабочий проводник N.

Поэтому получаем, что когда мы используем 3-х жильный кабель у себя дома, то у него не учитывается нулевой защитный проводник. Для такого кабеля нужно смотреть столбец в таблице для «одного двухжильного». Если вы дома используете 5-ти жильный кабель для подключения 3-х фазной нагрузки, то у него уже не учитываются две жилы — это нулевой защитный и нулевой рабочий проводники. Для такого кабеля нужно смотреть в таблице столбец как для «одного трехжильного».

Нулевой защитный проводник в расчет не принимается, так как по нему не протекает ток, он соответственно не греется и не оказывает теплового влияния на свои соседние жилы. В трехфазном кабеле протекает ток в трех жилах, которые греют друг друга и поэтому жилы этого кабеля нагреваются до температуры +65С0 при меньшем токе, чем однофазный кабель.

Также если вы прокладываете провода в кабель-каналах (коробах) или пучками на лотках, то в таблицах ПУЭ это понимается как прокладка в одной трубе.

Вот вроде бы и разобрались с этими волшебными таблицами из ПУЭ )))

Теперь давайте всю полученную информацию подытожим. Для примера я возьму самый распространенный кабель в домах — это 3х2,5. Данный кабель 3-х жильный и поэтому мы у него не считаем третью жилу. Если мы его прокладываем не открыто, а в чем-нибудь (в коробе и т.д.), то значение длительного номинального тока нужно выбирать из столбца «для прокладки в одной трубе одного двухжильного». Для сечения 2,5 мм2 мы получает 25А. В принципе мы его можем защитить автоматическим выключателем на 25А, что многие и делают. Когда данный автомат сработает из-за перегрузки, то кабель будет иметь температуру выше +65С0. Лично я не хочу, чтобы кабели у меня дома могли нагреваться до такой высокой температуры. Вот из каких соображений:

  1. Автомат срабатывает от перегрузки при токе превышающем его номинал более чем на 13%, т.е 25Ах1,13=28,25А. Этот ток уже будет завышенным для кабеля сечением 2,5мм2 и соответственно жилы кабеля нагреются больше чем на +65С0.
  2. Современный кабель имеет заниженное сечение, чем заявлено на его изоляции. Если взять кабель сечением 2,5мм2, то реальное его сечение может оказаться 2,3мм2, а то и меньше. Это наша действительность. Вы сейчас уже не сможете найти в продаже кабель соответствующий заявленному сечению. Если на нем будет написано ГОСТ, то уже с большой уверенностью я могу сказать, что его сечение будет меньше на 0,1-0,2 мм2. Я делаю такой вывод, так как нами уже измерено множество кабелей и разных производителей, на которых написано ГОСТ.

Исходя из вышесказанного лично я всегда буду защищать кабель сечением 2,5мм2, автоматическим выключателем номиналом 16А. Это позволит сделать запас по току 25-16=9А. Этот запас может снизить риски перегрева кабеля из-за задержки срабатывания автомата, из-за заниженного сечения и не позволит жилам кабеля нагреться до температуры +65С0. С выбором номиналов автоматических выключателей для других сечений я поступаю аналогичным способом. Я и вам советую придерживаться такого мнения при выборе пары автомат + кабель.

Если вы не согласны с моим мнением, то пожалуйста выскажете это в комментариях. Нам всем будет полезно найти правильное решение в этом нелегком выборе )))

Таблица мощности проводов: рассмотрим подробно

Упрощенная таблица для выбора сечения проводника по номинальной мощности

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.

Что такое cosα

  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.

Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).

На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников

  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.

Таблица выбора сечения провода для медных проводников

Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.

Таблица поправочных температурных коэффициентов

  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.

Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.

Таблицы и формулы для выбора сечения кабеля

Электроэнергия может вырабатываться генератором на напряжении 6, 10, 18кВ. Далее она идет по шинопроводам или комплектным токопроводам к трансформаторам, которые повышают эту величину до 35-330кВ. Чем выше напряжение, тем дальше эту энергию передавать. Затем уже по ЛЭП электричество идет до потребителей. Там опять трансформируется через понижающие трансформаторы до величины 0,4кВ. И между всеми этими преобразованиями электричество идет по воздушным, кабельным линиям различного напряжения. Выбор сечения этих кабелей отдельный вопрос, который и рассматривается в данной статье.

Если обратиться к основам вопроса, то его сразу можно разделить на две части. Часть первая, выбор сечения в сетях до 1кВ, ну и вторая часть (в отдельной статье) — выбор сечения в сетях выше 1кВ. Кроме того, рассмотрим общий для этих классов напряжения вопрос — определение сечения кабеля по диаметру. Сразу предупреждаю, что впереди много таблиц, но пусть это Вас не пугает, так как порой таблица лучше тысячи слов.

Выбор и расчет сечения кабелей напряжением до 1кВ (для квартиры, дома)

Электрические сети до 1кВ самые многочисленные — это как паутина, которая обвивает всю электроэнергетику и в которой такое бесчисленное множество автоматов, схем и устройств, что голова у неподготовленного человека может пойти кругом. Кроме сетей 0,4кВ промышленных предприятий (заводов, ТЭЦ), к этим сетям относится и проводка в квартирах, коттеджах. Поэтому вопросом выбора и расчета сечения кабеля задаются и люди, которые далеки от электричества — простые владельцы недвижимости.

Кабель используется для передачи электроэнергии от источника к потребителю. В квартирах мы рассматриваем участок от электрического щитка, где установлен вводной автоматический выключатель на квартиру, до розеток, в которые подключаются наши приборы (телевизоры, стиральные машины, чайники). Всё, что отходит от автомата в сторону от квартиры в ведомстве обслуживающей организации, туда лезть мы права не имеем. То есть рассматриваем вопрос прокладки кабелей от вводного автомата до розеток в стене и выключателей на потолке.

В общем случае для освещения берут 1,5 квадрата, для розеток 2,5, а расчет необходим, если требуется подключать что-то нестандартное с большой мощностью — стиралку, бойлер, тэн, плиту.

Выбор сечения кабеля по мощности

Рассматривать далее буду квартиру, так как на предприятиях люди грамотные и всё знают. Чтобы прикинуть мощность необходимо знать мощность каждого электроприемника, сложить их вместе. Единственным минусом при выборе кабеля большего сечения, чем необходимо, является экономическая нецелесообразность. Так как больший кабель больше стоит, но меньше греется. А если выбрать правильно то выйдет и дешевле и греться не будет сильно. В меньшую же сторону округлять нельзя, так как кабель будет больше греться от протекания в нем тока и быстрее придет в неисправное состояние, которое может повлечь за собой неисправность электроприбора и всей проводки.

Первым шагом при выборе сечения кабеля будет определение мощности подключенных к нему нагрузок, а также характер нагрузки — однофазная, трехфазная. Трехфазная это может быть плита в квартире или станок в гараже в частном доме.

Если все приборы уже приобретены, то можно узнать мощность каждого по паспорту, который идет в комплекте, или, зная тип, можно найти в интернете паспорт и посмотреть мощность там.

Если приборы не куплены, но покупать их входит в ваши планы, то можно воспользоваться таблицей, где занесены наиболее популярные приборы. Выписываем значения мощностей и складываем те величины, которые одновременно могут включаться в одну розетку. Приведенные ниже значения носят справочный характер, при расчете следует брать большее значение (если указан диапазон мощности). И всегда лучше посмотреть в паспорт, чем брать средние показатели из таблиц.

ЭлектроприборВероятная мощность, Вт
Стиральная машина4000
Микроволновка1500-2000
Телевизор100-400
ЭкранЭ
Холодильник150-2000
Чайник электрический1000-3000
Обогреватель1000-2500
Плита электрическая1100-6000
Компьютер (тут всякое возможно)400-800
Фен для волос450-2000
Кондиционер1000-3000
Дрель400-800
Шлифовальная машина650-2200
Перфоратор600-1400

Выключатели, которые идут после вводного удобно разделять на группы. Отдельные выключатели для питания плиты, стиралки, бойлера и других мощных приборов. Отдельные для питания освещения отдельных комнат, отдельные для групп розеток комнат. Но это в идеале, в реальности бывает просто вводной и три автомата. Но что-то я отвлекся…

Зная значение мощности, которая будет подключаться к данной розетке мы выбираем по таблице сечение с округлением в большую сторону.

За основу возьму таблицы 1.3.4-1.3.5 из 7-го издания ПУЭ. Эти таблицы даны для проводов, шнуров алюминиевых или медных с резиновой и (или) ПВХ изоляцией. То есть то что мы используем в домашней проводке — к данному типу подходит и любимые электриками медные NYM и ВВГ, и алюминиевый АВВГ.

Кроме таблиц нам понадобятся две формулы активной мощности: для однофазной (P=U*I*cosf) и трехфазной сети (та же формула, только еще умножить на корень из трех, который равен 1,732). Косинус принимаем единице, будет у нас для запаса.

Хотя существуют таблицы, где для каждого типа розетки (розетка для станка, розетка для того, для сего) описан свой косинус. Но больше единицы он быть не может, поэтому не страшно, если примем его 1.

Еще перед взглядом в таблицу стоит определиться как и в каком количестве у нас будут проложены наши провода. Варианты есть следующие — открыто или в трубе. А в трубе можно двух- или трех- или четырех одножильных, одного трехжильного или одного двухжильного. Для квартиры нам на выбор либо два одножильных в трубе — это на 220В, либо четыре одножильных в трубе — на 380В. При прокладке в трубе, необходимо, чтобы процентов 40 оставалось свободного пространства в этой самой трубе, это для отсутствия перегрева. Если прокладывать необходимо провода в другом количестве или другим способом то смело открывайте ПУЭ и пересчитывайте для себя, или же выбирайте не по мощности, а по току, о чем пойдет речь чуть позже в этой статье.

Выбирать можно как медный, так и алюминиевый кабель. Хотя, в последнее время большее применение получает медный, так как для одной и той же мощности потребуется меньшее сечение. К тому же медь имеет лучшие электропроводящие свойства, механическую прочность, меньше подвержена окислению, и плюс ко всему срок службы медного провода выше по сравнению с алюминием.

Определились с тем, медь или алюминий, 220 или 380В? Что же, смотрим в таблицу и выбираем сечение. Но учитываем, что в таблице у нас приведены значения для двух или четырех одножильных проводов в трубе.

Посчитали мы нагрузку например в 6кВт для розетки на 220В и смотрим 5,9 мало, хоть и близко, выбираем 8,3кВт — 4мм2 для меди. А если решили алюминий, то 6,1кВт — тоже 4мм2. Хотя выбрать стоит медь, так как ток при таком же сечении будет допустимый на 10А больше.

Выбор сечения кабеля по току

Суть выбора аналогичная, только теперь у нас есть ПУЭ, где прописаны токи, но сами токи нам неизвестны. Хотя, постойте… Ведь мы знаем мощности приборов и можем по формуле вычислить величины токов. Да и токи могут быть написаны в паспортах на изделия. Аналогично смотрим в таблицы ниже. Это уже таблицы из официальных документов, так что придраться не к чему.

Выбор сечения провода с резиновой или ПВХ изоляцией по допустимому току

Данные провода наиболее распространены, поэтому и приведена эта таблица. В ПУЭ же имеются другие таблицы на все случаи жизни для проводов, кабелей, шнуров с оболочкой и без при прокладке в воде, земле и воздухе. Но это уже частные случаи. Кстати, таблица что приведена при расчете по мощности полностью является частным случаем таблиц выбора по току, которые являются официальными и описаны в ПУЭ.

Расчет кабеля по мощности и длине

В случае, если вы прокладываете кабель на длинное расстояние (ну метров 15 и более), то Вам необходимо учитывать и падение напряжения, которое вызвано сопротивлением кабельной линии.

Чем же неблагоприятно для нас падение напряжения на конце кабельной линии? Для лампочки это ухудшение светового потока при снижении напряжения, или уменьшение срока службы при повышенном напряжении. Существуют допустимые величины отклонения напряжения. Но в основном для электроприборов это плюс минус пять процентов.

В этом случае требуется произвести расчет, и в случае, если напряжение будет ниже номинального на 5% и более, то придется увеличить сечение и заново произвести расчет. Или же воспользоваться очередной таблицей.

Сейчас немного углубимся в матчасть. Падение напряжения для трехфазной сети определяется по формуле:

Эта величина состоит из двух частей, активной(R) и индуктивной(X). Индуктивной частью можно пренебречь в следующих случаях:

  • сеть постоянного тока
  • сеть переменного тока, при cos=1
  • сети, выполненные кабелями или изолированными проводами, проложенными в трубах, если их сечение не больше определенной величины, но не будем углубляться дальше.

В общем индуктивной составляющей пренебрегаем, косинус принимаем равным 1. Значение R определяется по формуле:

где р — удельное сопротивление (для меди — 0,0175, а для алюминия — 0,03)

Далее два варианта расчета:

а) по заданному значению падения напряжения находим допустимое сечение и выбираем следующее большее значение.

б) по заданному значению мощности или тока определяем падение напряжения на участке, и в случае, если оно будет больше 5%, выбираем другое сечение и повторяем расчет.

В вышеприведенных формулах длина в метрах, ток в амперах, напряжение в вольтах, площадь в мм2. Сама величина падения напряжения в относительных величинах, безразмерная. Формулы пригодны для расчетов при отсутствии индуктивной составляющей и косинусе равном 1. Ряд сечений кабелей стандартный. В принципе с полученным значением сечения можно идти на рынок и смотреть, что подойдет с округлением в большую сторону.

А можно воспользоваться таблицами в интернетах, но эти таблицы… Не понятно откуда и для какого случая они построены. Формулы — наше всё!

Определение сечения кабеля по диаметру

Если у Вас есть возможность замерить диаметр жилы кабеля, естественно голой, без изоляции, значит можно определить сечение этой жилы. Опять у нас два пути: формула или таблица. Каждый пусть выбирает, что ему удобнее.

Формула: пидэквадратначетыре. Это все знают. Измеряем диаметр провода (линейка, штангенциркуль, микрометр), повторюсь очищенного. Значение возводим в квадрат, умножаем на число пи (равно 3,14) и делим на 4. Получаем значение сечения. Примерное, ведь погрешности тут и в числе пи и в самом измерении.
Хотите, вот таблица элементарная — измеряем диаметр, смотрим соответствует ли заявленному на бирке сечению.

Если провод многожильный, то либо каждую жилу измеряем, а потом считаем их число. Ну и умножаем число на диаметр одной и далее по схеме, приведенной выше. Либо, если они хорошо скручены в форме круга на конце, производим замер как на одножильном.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Выбор сечения кабеля по току


Автор Aluarius На чтение 6 мин. Просмотров 3.5k. Опубликовано

В Правилах управления электроустановок четко расписано, сколько тока должна суммарно потреблять городская квартира, а, значит, кабель какого сечения должен быть в ней использован. Его параметры: площадь сечения 2,5 мм², диаметр 1,8 мм, токовая нагрузка 16 А. Конечно, увеличение количества бытовых приборов изменяет эти показатели, поэтому совет – использовать медный кабель площадью 4 мм², диаметром 2,26 мм, который будет выдерживать токовую нагрузку в 25 А.

Для частного дома эти эксплуатационные показатели также приемлемы. Но необходимо учитывать тот момент, что в квартире или доме электрическая схема разбивается на контуры (шлейфы), которые будут подвергаться различным нагрузкам в зависимости от мощности потребителя. Поэтому придется производить выбор сечения кабеля по току (таблица ПУЭ в данном случае хороший помощник).

Расчет сечения провода

Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно провести расчет сечения кабеля по току. Для этого потребуется штангенциркуль и формула.

Если рассмотреть сечение кабеля, то это круг с определенным диаметром. Существует формула площади круга:

S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» – диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².

Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков? Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.

Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство. Поэтому полученную величину надо умножить на снижающий коэффициент – 0,91.

Соотношение тока и сечения

Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами. Чем больше их площадь, тем большей силы ток, через них пройдет. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.

Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу. К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.

Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке. Для примера обозначим некоторые из них:

  • Чайник – 1-2 кВт.
  • Микроволновка и мясорубка 1,5-2,2 кВт.
  • Кофемолка и кофеварка – 0,5-1,5 кВт.
  • Холодильник 0,8 кВт.

Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.

  • Сила тока 16 А, сечение кабеля 2,7 мм², диаметр провода 1,87 мм.
  • 25 А – 4,2 – 2,32.
  • 32 А – 5,3 – 2.6.
  • 40 А – 6,7 – 2,92.

Но тут есть нюансы. К примеру, вам необходимо подключить стиральную машину. Специалисты рекомендуют к таким мощным приборам из распределительного щита проводить отдельный контур, запитав его на отдельный автомат. Так вот потребляемая мощность стиральной машины – 4 кВт, а это ток силой 18 А. В таблице ПУЭ этого показателя нет, поэтому необходимо доводить его до ближайшего большего, а это 20 А, к которому подходит контур сечением 3,3 мм² диаметром 2,05 мм. Опять-таки, провода с таким значением нет, значит, доводим и его до ближайшего большего. Это 4 мм². Кстати, таблица стандартных размеров электрических проводов также есть в интернете в свободном доступе.

Внимание! Если под рукой не оказалось кабеля нужного сечения, то можно его заменить двумя, тремя и так далее проводами меньшей площади, которые соединяются параллельно. При этом суммарное их сечение должно совпадать с сечением номинала. К примеру, чтобы заменить кабель сечением 10 мм², можно вместо него использовать или два провода по 5 мм², или три по 2, 3 и 5 мм², или четыре: два по 2 и два по 3.

Трехфазное подключение

Трехфазная сеть – это три провода, по которым и движется ток. Соответственно нагрузка прибора, подключенного на три фазы, уменьшается в три раза на каждой фазе. Поэтому для каждой фазы можно использовать кабель меньшего сечения. Здесь тоже соотношение – в три раза. То есть, если сечение кабеля в однофазной сети равно 4 мм², то для трехфазной можно брать 4/1,75=2,3 мм². Переводим в стандартный больший размер по таблице ПУЭ – 2,5 мм².

Алюминиевый провод

В достаточно большом количестве домов и квартир еще присутствует электрическая разводка алюминиевым кабелем. Ничего плохого о нем сказать нельзя. Алюминиевый кабель прекрасно служит, и как показала жизнь, срок его эксплуатации практически ничем не ограничен. Конечно, если правильно подобрать его по току и грамотно провести соединение.

Так же как и в случае с медным кабелем, проведем сравнение алюминиевого по сечению, силе тока и мощности. Опять-таки, не будем рассматривать все, возьмем только ходовые параметры.

  • Кабель сечением 2,5 мм² выдерживает силу тока, равную 16 А, и мощность потребителя 3,5 кВт.
  • 4 мм² – 21 А – 4,6 кВт.
  • 6 – 26 – 5,7.
  • 10 – 38 – 8,4.

Выбор провода

Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.

Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.

Выбор кабеля по маркам. Тут оптимальный вариант – кабель ВВГ. Это медные провода с двойной пластиковой изоляцией. Если вам встретится марка «NYM», то считайте, что это все тот же ВВГ, только зарубежного исполнения.

Одножильный и многожильный кабель

Внимание! Использовать сегодня провода марки ПУНП запрещено. Для этого есть постановление Главгосэнергонадзора, которое действует аж с 1990 года.

Заключение по теме

Как видите, провести выбор сечения кабеля по силе тока, действующего в потребительской сети, не очень сложно. Практически нет необходимости заниматься какими-то сложными математическими манипуляциями. Для удобства всегда можно воспользоваться таблицами из правил ПУЭ. Главное – правильно подсчитать общую мощность всех потребителей, установленных на одном электрическом контуре.

Таблица подбора сечения кабеля

Кабели и провода играют основную роль в процессе передачи и распределения электрического тока. Являясь основными проводниками электричества к потребителям электрической энергии (холодильник, стиральная машина, чайник, телевизор и т.д.), кабели и провода для всей электрической сети должны быть подобраны в соответствии с потреблением и нагрузками всех электроприборов. Для бесперебойного прохождения электрического тока необходимо сделать точный расчет сечения кабеля как по силе тока, так и по мощности нагрузки.

Для подбора сечения кабеля и провода по мощности и силе тока можно воспользоваться следующими таблицами:
















Сечение токопроводящей жилы, мм2Для  кабеля с медными жилами
Напряжение 220 ВНапряжение 380 В
Ток АМощность кВтТок АМощность кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066260171,6















Сечение токопроводящей жилы, мм2Для  кабеля с алюминиевыми жилами
Напряжение 220 ВНапряжение 380 В
Ток АМощность кВтТок АМощность кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
1050113925,7
166013,25536,3
258518,77046,2
35100228556,1
5013529,711072,6
7016536,314092,4
9520044170112,2
12023050,6200132

Данные взяты из таблиц ПУЭ.

При разработке и проектировании электрической сети, необходимо правильно рассчитывать сечение кабеля по мощности и силе тока. Неправильные расчеты приведут к перегреву кабеля, что, в свою очередь, приведет к разрушению изоляции и, как следствие, к замыканию и возгоранию. Грамотный расчет позволит Вам избежать аварийной ситуации и больших затрат на ремонт электропроводки и замены электроприборов.

Материалы, близкие по теме:

Выбор сечения кабеля по току и мощности

Основополагающим документом в проведении электромонтажа является ПУЭ (привила устройства электроустановок). Я не ставлю задачу процитировать все нормы и правила, это займет массу нашего времени. Рассмотрим основное, наиболее чисто встречающееся в повседневной жизни. Одно из первых вопросов возникающие при проведении электромонтажных работ является расчет нагрузок и сечения кабеля по току. Рассмотрим несколько таблиц из ПУЭ в которых указаны допустимые токи для разного сечения кабеля.

ПУЭ Глава 1.3

Раздел: допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, нейритовой или резиновой оболочке, бронированных и небронированных















Ток *, А, для проводов и кабелей

Сечение токопро-водящей

одно-жильных

двух-жильных

трех-жильных

жилы, мм

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

___________

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

1,5

23

19

33

19

27

2,5

30

27

44

25

38

  4

41

38

55

35

49

6

50

50

70

42

60

10

80

70

105

55

90

16

100

90

135

75

115

25

140

115

175

95

150

35

170

140

210

120

180

50

215

175

265

145

225

Комментарий


Как мы видим из таблицы самые распространенные кабели 1,5мм2 и 2,5мм2, проложенные открыто выдерживают токи 19 и 25 ампер соответственно, а если те же кабели проложены в земле (или замоноличены в стене) токи еще более увеличиваются. По правилам для защиты групповой линии с установленным шестнадцати амперным автоматом можно использовать кабели обоих сечений.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами













Ток, А, для проводов, проложенных

Сечение токо-

прово- дящей

в одной трубе

жилы, мм

открыто

двух одно-

жильных

трех одно-

жильных

четырех одно-

жильных

одного

двух-

жильного

одного трех-

жильного

1,5

23

19

17

16

18

16

2,5

30

27

25

25

25

21

4

41

38

35

30

32

27

6

50

46

42

40

40

34

10

80

70

60

50

55

50

16

100

85

80

75

80

70

25

140

115

100

90

100

85

35

170

135

125

115

125

100

50

215

185

170

150

160

135

Комментарий


Внимательно изучив эту таблицу видно, что токи, которые выдерживают медные провода несколько ниже. Когда мы приходим в магазин, для покупки кабеля, там висит именно эта таблица. Продавцам значительно выгоднее продать Вам кабель более большого сечения.  Однако в соответствии с правилами мы должны пользоваться первой таблицей. Именно в ней внесены нужные нагрузки! Во второй таблице прописаны максимальные токи для проводов и шнуров, это существенно отличается от кабеля!

ПУЭ Глава 7.1

Раздел: Электропроводки и кабельные линии

В жилых зданиях сечения медных проводников должны соответствовать расчетным значениям, но быть не менее указанных в таблице 7.1.1.

Таблица 7.1.1 Наименьшие допустимые сечения кабелей
и проводов электрических сетей в жилых зданиях





Наименование линий

Наименьшее сечение кабелей и проводов с медными жилами, мм2

Линии групповых сетей

1,5

Линии от этажных до квартирных щитков и к расчетному счетчику

2,5

Линии распределительной сети (стояки) для питания квартир

4,0

Сопротивление и удельное сопротивление | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните понятие удельного сопротивления.
  • Используйте удельное сопротивление для расчета сопротивления материалов указанной конфигурации.
  • Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.

Зависимость сопротивления от материала и формы

Сопротивление объекта зависит от его формы и материала, из которого он сделан.Цилиндрический резистор на Рисунке 1 легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.

Рис. 1. Однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, которое труба оказывает потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление ρ вещества так, чтобы сопротивление R объекта было прямо пропорционально ρ.Удельное сопротивление ρ — это внутреннее свойство материала, не зависящее от его формы или размера. Сопротивление R однородного цилиндра длины L с площадью поперечного сечения A, изготовленного из материала с удельным сопротивлением ρ, составляет

.

[латекс] R = \ frac {\ rho L} {A} \\ [/ латекс].

В таблице 1 приведены репрезентативные значения ρ. Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельных сопротивлений. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление.Проводники имеют различную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Таблица 1.Удельное сопротивление ρ различных материалов при 20 ° C
Материал Удельное сопротивление ρ (Ом ⋅ м)
Проводники
Серебро 1. 59 × 10 −8
Медь 1. 72 × 10 −8
Золото 2. 44 × 10 −8
Алюминий 2. 65 × 10 −8
Вольфрам 5.6 × 10 −8
Утюг 9. 71 × 10 −8
Платина 10. 6 × 10 −8
Сталь 20 × 10 −8
Свинец 22 × 10 −8
Манганин (сплав Cu, Mn, Ni) 44 × 10 −8
Константан (сплав Cu, Ni) 49 × 10 −8
Меркурий 96 × 10 −8
Нихром (сплав Ni, Fe, Cr) 100 × 10 −8
Полупроводники
Углерод (чистый) 3.5 × 10 5
Углерод (3,5 — 60) × 10 5
Германий (чистый) 600 × 10 −3
Германий (1−600) × 10 −3
Кремний (чистый) 2300
Кремний 0,1–2300
Изоляторы
Янтарь 5 × 10 14
Стекло 10 9 -10 14
Люцит> 10 13
Слюда 10 11 -10 15
Кварц (плавленый) 75 × 10 16
Резина (твердая) 10 13 -10 16
Сера 10 15
тефлон> 10 13
Дерево 10 8 -10 11

Пример 1.Расчет диаметра резистора: нить накала фары

Нить накала автомобильной фары изготовлена ​​из вольфрама и имеет сопротивление холоду 0,350 Ом. Если нить представляет собой цилиндр длиной 4,00 см (ее можно свернуть в бухту для экономии места), каков ее диаметр?

Стратегия

Мы можем переписать уравнение [латекс] R = \ frac {\ rho L} {A} \\ [/ latex], чтобы найти площадь поперечного сечения A нити на основе данной информации. Тогда его диаметр можно определить, предположив, что он имеет круглое поперечное сечение.{-5} \ text {m} \ end {array} \\ [/ latex].

Обсуждение

Диаметр чуть меньше десятой миллиметра. Он состоит только из двух цифр, поскольку ρ известен только из двух цифр.

Температурное изменение сопротивления

Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. Рисунок 2.)

Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4.2 К. Выше этой критической температуры его сопротивление делает резкий скачок, а затем почти линейно увеличивается с температурой.

И наоборот, удельное сопротивление проводников увеличивается с увеличением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, эффективно увеличивая удельное сопротивление. При относительно небольших изменениях температуры (около 100 ° C или меньше) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражено в следующем уравнении

ρ = ρ 0 (1 + αΔT),

, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.(См. Значения α в Таблице 2 ниже.) Для более значительных изменений температуры α может изменяться или может потребоваться нелинейное уравнение для нахождения ρ. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. У манганина (который состоит из меди, марганца и никеля), например, α близок к нулю (до трех цифр на шкале в таблице 2), и поэтому его удельное сопротивление незначительно изменяется с температурой.Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Таблица 2. Температурные коэффициенты удельного сопротивления α
Материал Коэффициент (1 / ° C)
Проводники
Серебро 3,8 × 10 −3
Медь 3,9 × 10 −3
Золото 3,4 × 10 −3
Алюминий 3.9 × 10 −3
Вольфрам 4,5 × 10 −3
Утюг 5,0 × 10 −3
Платина 3,93 × 10 −3
Свинец 3,9 × 10 −3
Манганин (сплав Cu, Mn, Ni) 0,000 × 10 −3
Константан (сплав Cu, Ni) 0,002 × 10 −3
Меркурий 0.89 × 10 −3
Нихром (сплав Ni, Fe, Cr) 0,4 × 10 −3
Полупроводники
Углерод (чистый) −0,5 × 10 −3
Германий (чистый) −50 × 10 −3
Кремний (чистый) −70 × 10 −3

Отметим также, что α отрицательна для полупроводников, перечисленных в таблице 2, что означает, что их удельное сопротивление уменьшается с увеличением температуры.Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках. Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, и поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ.(Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,

R = R 0 (1 + αΔT)

— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры ΔT. Многие термометры основаны на влиянии температуры на сопротивление.(См. Рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рис. 3. Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры. (Источник: Biol, Wikimedia Commons)

Пример 2.Расчет сопротивления: сопротивление горячей нити

Хотя следует соблюдать осторожность при применении ρ = ρ 0 (1 + αΔT) и R = R 0 (1 + αΔT) для температурных изменений более 100 ° C, для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры. . Каково же сопротивление вольфрамовой нити в предыдущем примере, если ее температура повышается с комнатной температуры (20ºC) до типичной рабочей температуры 2850ºC?

Стратегия

Это прямое применение R = R 0 (1 + αΔT), поскольку исходное сопротивление нити было задано равным R 0 = 0.{-3} / º \ text {C} \ right) \ left (2830º \ text {C} \ right) \ right] \\ & = & {4.8 \ Omega} \ end {array} \\ [/ latex] .

Обсуждение

Это значение согласуется с примером сопротивления фары в Законе Ома: сопротивление и простые цепи.

Исследования PhET: сопротивление в проводе

Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Сопротивление R цилиндра длиной L и площадью поперечного сечения A равно [латекс] R = \ frac {\ rho L} {A} \\ [/ latex], где ρ — удельное сопротивление материала.
  • Значения ρ в таблице 1 показывают, что материалы делятся на три группы — проводники, полупроводники и изоляторы.
  • Температура влияет на удельное сопротивление; для относительно небольших изменений температуры ΔT, удельное сопротивление равно [латекс] \ rho = {\ rho} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где ρ 0 — исходное удельное сопротивление, а [латекс] \ text {\ alpha} [/ latex] — температурный коэффициент удельного сопротивления.
  • В таблице 2 приведены значения α, температурного коэффициента удельного сопротивления.
  • Сопротивление R объекта также зависит от температуры: [латекс] R = {R} _ {0} \ left (\ text {1} + \ alpha \ Delta T \ right) \\ [/ latex], где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры.

Концептуальные вопросы

1. В каком из трех полупроводниковых материалов, перечисленных в таблице 1, примеси дают свободные заряды? (Подсказка: изучите диапазон удельного сопротивления для каждого и определите, имеет ли чистый полупроводник большую или меньшую проводимость.)

2. Зависит ли сопротивление объекта от пути тока, проходящего через него? Рассмотрим, например, прямоугольный стержень — одинаково ли его сопротивление по длине и по ширине? (См. Рисунок 5.)

Рис. 5. Встречается ли ток, проходящий по двум разным путям через один и тот же объект, с разным сопротивлением?

3. Если алюминиевый и медный провода одинаковой длины имеют одинаковое сопротивление, какой из них имеет больший диаметр? Почему?

4. Объясните, почему [латекс] R = {R} _ {0} \ left (1+ \ alpha \ Delta T \ right) \\ [/ latex] для температурного изменения сопротивления R объекта не соответствует с точностью как [латекс] \ rho = {\ rho} _ {0} \ left ({1} + \ alpha \ Delta T \ right) \\ [/ latex], что дает температурное изменение удельного сопротивления ρ.

Задачи и упражнения

1. Каково сопротивление отрезка медного провода 12-го калибра длиной 20,0 м и диаметром 2,053 мм?

2. Диаметр медного провода нулевого сечения — 8,252 мм. Найдите сопротивление такого провода длиной 1,00 км, используемого для передачи энергии.

3. Если вольфрамовая нить диаметром 0,100 мм в лампочке должна иметь сопротивление 0,200 Ом при 20 ° C, какой длины она должна быть?

4. Найдите отношение диаметра алюминиевого провода к медному, если они имеют одинаковое сопротивление на единицу длины (как в бытовой электропроводке).

5. Какой ток протекает через стержень из чистого кремния диаметром 2,54 см и длиной 20,0 см при приложении к нему 1,00 × 10 3 В? (Такой стержень может быть использован, например, для изготовления детекторов ядерных частиц.)

6. (a) До какой температуры нужно нагреть медный провод, изначально равный 20,0 ° C, чтобы удвоить его сопротивление, не обращая внимания на любые изменения в размерах? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?

7. Резистор из нихромовой проволоки используется там, где его сопротивление не может изменяться более чем на 1.00% от его значения при 20,0ºC. В каком температурном диапазоне его можно использовать?

8. Из какого материала изготовлен резистор, если его сопротивление на 40,0% больше при 100 ° C, чем при 20,0 ° C?

9. Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0 ° C до 55,0 ° C, содержит резисторы из чистого углерода. В какой степени их сопротивление увеличивается в этом диапазоне?

10. (a) Из какого материала изготовлена ​​проволока, если она имеет длину 25,0 м, диаметр 0,100 мм и сопротивление 77.7 Ом при 20,0 ° C? (б) Каково его сопротивление при 150 ° C?

11. При условии постоянного температурного коэффициента удельного сопротивления, каков максимальный процент уменьшения сопротивления константановой проволоки, начиная с 20,0 ° C?

12. Через матрицу протягивают проволоку, растягивая ее в четыре раза по сравнению с исходной длиной. По какому фактору увеличивается его сопротивляемость?

13. Медный провод имеет сопротивление 0,500 Ом при 20,0 ° C, а железный провод имеет сопротивление 0,525 Ом при той же температуре.При какой температуре их сопротивления равны?

14. (a) Цифровые медицинские термометры определяют температуру путем измерения сопротивления полупроводникового устройства, называемого термистором (который имеет α = –0,0600 / ºC), когда он находится при той же температуре, что и пациент. Какова температура пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0 ° C (нормальная температура тела)? (b) Отрицательное значение α не может поддерживаться при очень низких температурах. Обсудите, почему и так ли здесь.(Подсказка: сопротивление не может стать отрицательным.)

15. Комплексные концепции (а) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения 12 × 10 −6 / ºC. б) На какой процент ваш ответ отличается от приведенного в примере?

16. Необоснованные результаты (а) До какой температуры необходимо нагреть резистор из константана, чтобы удвоить его сопротивление, при условии постоянного температурного коэффициента удельного сопротивления? б) разрезать пополам? (c) Что необоснованного в этих результатах? (d) Какие предположения необоснованны или какие посылки несовместимы?

Сноски

  1. 1 Значения сильно зависят от количества и типа примесей
  2. 2 значения при 20 ° C.

Глоссарий

удельное сопротивление:
внутреннее свойство материала, независимо от его формы или размера, прямо пропорциональное сопротивлению, обозначаемое ρ

.

температурный коэффициент удельного сопротивления:
эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала при температуре

Избранные решения проблем и упражнения

1. 0,104 Ом

3.2,8 × 10 -2 м

5. 1,10 × 10 −3 A

7. от −5ºC до 45ºC

9. 1.03

11. 0,06%

13. −17ºC

15. (a) 4,7 Ом (всего) (b) уменьшение на 3,0%


Стандартные сечения кабелей и проводов

IEC 60228 — международный стандарт Международной электротехнической комиссии по проводам изолированных кабелей. Среди прочего он определяет набор стандартных сечений проводов:

Размеры проводов, соответствующие международным стандартам (IEC 60228)
0.5 мм² 0,75 мм² 1 мм² 1,5 мм² 2,5 мм² 4 мм²
6 мм² 10 мм² 16 мм² 25 мм² 35 мм² 50 мм²
70 мм² 95 мм² 120 мм² 150 мм² 185 мм² 240 мм²
300 мм² 400 мм² 500 мм² 630 мм² 800 мм² 1000 мм²

В США размеры проводов обычно измеряются в американских калибрах проводов (AW).Увеличение AWG приводит к уменьшению площади поперечного сечения (наименьший размер AWG равен 50, а наибольший — 0000).

Метрическая система преобразования AWG

Кол-во прядей / диаметр
за прядь
Общий примерный
диаметр
мм² AWG Circ.Милс дюймов мм дюймов мм
0,5 987 1 / .032 1 / .813 0,032 0,81
20 1020 7 /.0121 7 / .307 0,036 0,91
0,75 1480 1 / .039 1 / .991 0,039 0,99
18 1620 1 /.0403 1 / 1.02 0,04 1.02
18 1620 7 / .0152 7 / .386 0,046 1,16
1 1974 1 /.045 1 / 1,14 0,045 1,14
1 1974 7 / .017 7 / .432 0,051 1,3
16 2580 1 /.0508 1 / 1,29 0,051 1,29
16 2580 7 / .0192 7 / .488 0,058 1,46
1,5 2960 1 /.055 1 / 1,40 0,055 1,4
1,5 2960 7 / .021 7 / .533 0,063 1,6
14 4110 1 /.0641 1 / 1,63 0,064 1,63
14 4110 7 / .0242 7 / .615 0,073 1,84
2,5 4934 1 /.071 1 / 1,80 0,071 1,8
2,5 4934 7 / .027 7 / .686 0,081 2,06
12 6530 1 /.0808 1 / 2,05 0,081 2,05
12 6530 7 / .0305 7 / .775 0,092 2,32
4 7894 1 /.089 1 / 2,26 0,089 2,26
4 7894 7 / .034 7 / .864 0,102 2,59
10 10380 1 /.1019 1 / 2,59 0,102 2,59
10 10380 7 / .0385 7 / .978 0,116 2,93
6 11840 1 /.109 1 / 2,77 0,109 2,77
6 11840 7 / .042 7 / 1.07 0,126 3,21
9 13090 1 /.1144 1 / 2,91 0,1144 2,91
9 13090 7 / .0432 7 / 1,10 0,13 3,3
8 16510 1 /.1285 1 / 3,26 0,128 3,26
8 16510 7 / .0486 7 / 1,23 0,146 3,7
10 19740 1 /.141 1 / 3,58 0,141 3,58
10 19740 7 / .054 7 / 1,37 0,162 4,12
7 20820 1 /.1443 1 / 3,67 0,144 3,67
7 20820 7 / .0545 7 / 1,38 0,164 4,15
6 26240 1 /.162 1 / 4,11 0,162 4,11
6 26240 7 / .0612 7 / 1,55 0,184 4.66
16 31580 7 /.068 7 / 1,73 0,204 5,18
5 33090 7 / .0688 7 / 1,75 0,206 5,24
4 41740 7 /.0772 7 / 1,96 0,232 5,88
25 49340 7 / .085 7 / 2,16 0,255 6,48
25 49340 19 /.052 19 / 1,32 0,26 6,6
3 52620 7 / .0867 7 / 2,20 0,26 6,61
2 66360 7 /.0974 7 / 2,47 0,292 7,42
35 69070 7 / .100 7 / 2,54 0,3 7,62
35 69070 19 /.061 19 / 1,55 0,305 7,75
1 83690 19 / .0664 19 / 1,69 0,332 9,43
50 98680 19 /.073 19 / 1,85 0,365 9,27
1/0 105600 19 / .0745 19 / 1,89 0,373 9,46
2/0 133100 19 /.0837 19 / 2,13 0,419 10,6
70 138100 19 / .086 19 / 2,18 0,43 10,9
3/0 167800 19 /.094 19 / 2,39 0,47 11,9
3/0 167800 37 / .0673 37 / 1,71 0,471 12
95 187500 19 /.101 19 / 2,57 0,505 12,8
95 187500 37 / .072 37 / 1,83 0,504 12,8
4/0 211600 19 /.1055 19 / 2,68 0,528 13,4
120 237,8 мкм 37 / .081 37 / 2,06 0,567 14,4
250 мкм 37 /.0822 37 / 2,09 0,575 14,6
150 300 мкм 37 / .090 37 / 2,29 0,63 16
350 мкм 37 /.0973 37 / 2,47 0,681 17,3
185365,1 мкм 37 / .100 37 / 2,54 0,7 17,8
400 мкм 37 /.104 37 / 2,64 0,728 18,5
240 473,6 мкм 37 / .114 37 / 2,90 0,798 20,3
240 473,6 мкм 61 /.089 61 / 2,26 0.801 20,3
500 мкм 37 / .1162 37 / 2,95 0,813 20,7
500 мкм 61 /.0905 61 / 2.30 0,814 20,7
300 592,1 мкм 61 / .099 61 / 2,51 0,891 22,6
600 мкм 61 /.0992 61 / 2,52 0,893 22,7
700 мкм 61 / .1071 61 / 2,72 0,964 24,5
750 мкм 61 /.1109 61 / 2,82 0,998 25,4
750 мкм 91 / .0908 91 / 2.31 0,999 25,4
400 789,4 мкм 61 /.114 61 / 2,90 1.026 26,1
800 мкм 61 / .1145 61 / 2,91 1.031 26,2
800 мкм 61 /.0938 91 / 2,38 1.032 26,2
500 1000 мкм 61 / .1280 61 / 3,25 1,152 29,3
1000 мкм 91 /.1048 91 / 2,66 1,153 29,3
625 1233,7 мкм 91 / .117 91 / 2,97 1,287 32,7
1250 мкм 91 /.1172 91 / 2,98 1,289 32,7
1250 мкм 127 / .0992 127 / 2,52 1,29 32,8
1500 мкм 91 /.1284 91 / 3,26 1,412 35,9
1500 мкм 127 / .1087 127 / 2,76 1,413 35,9
800 1578,8 мкм 91 /.132 91 / 3,35 1.452 36,9
1000 1973,5 мкм 91 / .147 91 / 3,73 1,617 41,1
2000 мкм 127 /.1255 127 / 3,19 1,632 41,5
2000 мкм 169 / .1088 169 / 2,76 1,632 41,5

Определения

  • Circ.Mils — площадь поперечного сечения в круглых милах
  • Awg — Американский калибр проволоки
  • мм² — Метрический размер провода мм²

См. Также

Силовой провод: OFC по сравнению с CCA

Когда дело доходит до сильноточной проводки в автомобиле, доступны два типа многожильных силовых проводов: сплошная медь и алюминий с медным покрытием.В этой статье рассматриваются различия между каждым типом проводов и объясняются проблемы, связанные с обеспечением того, чтобы ваше сильноточное устройство получало мощность, необходимую для выполнения той работы, которую вы хотите.

Провод питания автомобильной аудиосистемы: общие сведения

В мобильных приложениях или в любом месте, где проводник может подвергаться движению или вибрации, рекомендуется использовать только многожильные проводники. Сплошные проводники (например, однопроволочная домашняя проводка) могут иметь немного большую площадь проводника для данного диаметра провода, но со временем сплошной провод может затвердеть, стать хрупким и в конечном итоге сломаться от повторяющихся возвратно-поступательных движений.Представьте себе, что вы используете сплошные медные провода большого сечения в кабельном кожухе в дверном косяке или к багажнику или крышке люка. Это рецепт катастрофы.

Термин OFC (бескислородная медь) стал использоваться в качестве синонима для одножильных или полностью медных проводников. На самом деле OFC — это сплошная медь. Когда расплавленная медь разливается и втягивается в проводник, процесс изготовления проводника из бескислородной меди снижает содержание кислорода в проводе. Если все сделано идеально, содержание меди и кислорода составляет около 42 частей на миллион (PPM) по сравнению собычная медь, содержание которой примерно в шесть раз больше.

В индустрии мобильной электроники невозможно узнать, является ли приобретаемый вами сплошной медный проводник бескислородным или нет, если вы не можете лично наблюдать за процессом литья. Каждый в отрасли использует «OFC» для отрезка провода, не покрытого медью из алюминия (CCA).

Если посмотреть на альтернативу, у нас есть проводники CCA. В этих проводниках сердечник провода представляет собой цилиндр из алюминия, а вокруг него — слой меди.Сбоку он выглядит как медь, но если отрезать кусок и посмотреть на его конец, можно увидеть содержание серого алюминия.

Возможны и другие варианты. Некоторые компании производят полностью медные многожильные провода, но для предотвращения коррозии внешнюю сторону каждой жилы покрывают тонким слоем олова.

Провод питания автомобильной аудиосистемы: размер

Когда дело доходит до протекающего электричества или, точнее, протекающих электронов, самое важное, что нужно учитывать, — это размер провода. В индустрии мобильной электроники мы используем стандарт American Wire Gauge (AWG).Это устанавливает определенный диаметр для проводника. Это не спорная цифра — дирижер либо соответствует стандарту, либо нет.

Здесь начинаются игры. В нашей отрасли используется второй термин: калибр. В производстве стального листа калибр является важным инструментом для определения толщины материала. В автомобильной аудиосистеме это ничего не значит. Если вы какое-то время были в отрасли, вы видели провода, которые, как утверждается, имеют нулевой калибр, но имеют площадь проводника, эквивалентную 6 AWG.Если на проводе обозначен калибр 4, то, к сожалению, у вас нет другого способа узнать его размер, кроме как попытаться измерить его.

Перерезание провода и осмотр местности тоже не всегда рассказывают историю. Некоторые провода намотаны довольно слабо. Это делает проволоку очень гибкой, но делает это потому, что вокруг жил остается пространство. Вы жертвуете эффективной площадью поперечного сечения проводника ради гибкости.

Провод питания автомобильной аудиосистемы: материалы

В сплошном медном многожильном проводе мы в идеале хотим, чтобы все было из чистой меди.Тем не менее, чистая медь довольно дорога, хотя стоимость чистой меди за последние несколько лет снизилась; в настоящее время на товарном рынке он составляет около 2–2,25 доллара за фунт. Когда производитель хочет приобрести проволоку, существует множество вариантов: количество прядей, способ плетения прядей и пучков, степень их плотности и т. Д. Производители также могут выбирать «вид» меди, из которой они делают проводники. Это может быть чистая медь, переработанная медь или медный сплав.Опять же, у вас нет возможности узнать, если вы не являетесь свидетелем процесса.

Пусть вас не пугают вариации цвета меди. Сплошной медный проводник всегда превосходит проводник CCA. Самая большая проблема с автомобильной аудиосистемой CCA заключается в том, что в ней не указывается и не будет указываться соотношение меди и алюминия. Существуют публично выставленные измерения различных образцов проводов CCA, в которых провод меньшего диаметра превосходит провод немного большего размера, поскольку в нем меньше алюминия и больше меди.Если вы не измеряете это самостоятельно, вы просто не знаете.

Сам по себе, фунт за фунтом, алюминий имеет примерно на 60% большее сопротивление потоку электричества. Когда мы говорим о проводе CCA, там есть немного меди; в большинстве случаев разница уменьшается до 30-40%.

Провод питания автомобильной аудиосистемы: Задача

Этот комплект питания Audison Connection Power Kit оснащен медным проводом OFC.

Когда вы смотрите на проводку автомобильной аудиосистемы, нет никакого способа узнать, что вы получаете с комплектом усилителя CCA или рулоном проводов.Некоторые производители делают провода CCA, которые работают почти так же хорошо, как сплошная медь. Фактически, одна компания выпускает КСА увеличенного размера, который имеет меньшее сопротивление на фут, чем сплошная медь. Обратной стороной является то, что провод не подходит ко многим разъемам или клеммным колодкам. В целом, если вы не хотите тратить время на измерение свойств приобретаемого вами комплекта, лучше придерживаться твердой меди.

С точки зрения долгосрочных преимуществ сплошная медная проволока намного лучше сопротивляется коррозии, чем проводка CCA.В климате, где зимой используется дорожная соль или рассол для защиты поверхностей от льда, мы видели случаи, когда незащищенные силовые провода CCA полностью выходили из строя менее чем за два года. Зачем рисковать производительностью аудиосистемы, если можно просто выбрать сплошной медный провод?

Как узнать, что вы получаете что-то хорошее? Ассоциация потребительских технологий (ранее Ассоциация бытовой электроники) разработала стандарт для электропроводки. Она называется спецификацией CTA-2015 (ранее CEA-2015).В нем описаны минимальные стандарты электропроводки для использования в мобильных электронных устройствах. Стандарты включают в себя то, что провод должен быть многопроволочным из твердой меди, минимальное количество жил для данного размера провода AWG, а также площадь провода и его максимальное сопротивление. Если вы будете придерживаться брендов, поддерживающих стандарт CTA-2015, у вас никогда не должно возникнуть проблем.

Чтобы распечатать эту статью в формате PDF, щелкните здесь. Спасибо нашему читателю Чаку Уайту за предоставленный нам PDF-файл.

Связанные

CONDUCTORS — прикладное промышленное электричество

К настоящему времени вы должны быть хорошо осведомлены о взаимосвязи между электропроводностью и некоторыми типами материалов.Эти материалы, которые позволяют легко проходить свободным электронам, называются проводниками, а материалы, препятствующие прохождению свободных электронов, называются изоляторами.

К сожалению, научные теории, объясняющие, почему одни материалы проводят, а другие нет, довольно сложны и уходят корнями в квантово-механические объяснения того, как электроны располагаются вокруг ядер атомов. В отличие от хорошо известной «планетарной» модели электронов, вращающихся вокруг ядра атома в виде четко определенных кусков материи по круговым или эллиптическим орбитам, электроны на «орбите» на самом деле совсем не действуют как частицы материи.Скорее, они демонстрируют характеристики как частицы, так и волны, их поведение ограничивается размещением в отдельных зонах вокруг ядра, называемых «оболочками» и «подоболочками». Электроны могут занимать эти зоны только в ограниченном диапазоне энергий в зависимости от конкретной зоны и того, насколько эта зона занята другими электронами. Если бы электроны действительно действовали как крошечные планеты, удерживаемые на орбите вокруг ядра за счет электростатического притяжения, их действия описывались бы теми же законами, что и движения реальных планет, не могло бы быть реального различия между проводниками и изоляторами, и химические связи между атомами не могли бы быть существуют так, как они есть сейчас.Именно дискретная, «количественная» природа энергии и расположения электронов, описываемая квантовой физикой, придает этим явлениям их регулярность.

Атом в возбужденном состоянии

Когда электрон может свободно принимать более высокие энергетические состояния вокруг ядра атома (из-за его размещения в определенной «оболочке»), он может свободно отрываться от атома и составлять часть электрического тока, протекающего через вещество.

Основной атом

Однако, если квантовые ограничения, наложенные на электрон, лишают его этой свободы, электрон считается «связанным» и не может оторваться (по крайней мере, нелегко), чтобы образовать ток.Первый сценарий типичен для проводящих материалов, а второй — для изоляционных материалов.

Некоторые учебники скажут вам, что электрическая проводимость элемента определяется исключительно количеством электронов, находящихся во внешней «оболочке» атомов (называемой валентной оболочкой), но это чрезмерное упрощение, поскольку любое исследование проводимости по сравнению с валентными электронами в таблица элементов подтвердит. Истинная сложность ситуации раскрывается далее при рассмотрении проводимости молекул (совокупностей атомов, связанных друг с другом электронной активностью).

Хорошим примером этого является элемент углерод, который состоит из материалов с сильно различающейся проводимостью: графита и алмаза. Графит — хороший проводник электричества, а алмаз — практически изолятор (что еще более странно, технически он классифицируется как полупроводник, который в чистом виде действует как изолятор, но может проводить при высоких температурах и / или под воздействием примесей) . И графит, и алмаз состоят из атомов одного и того же типа: углерода с 6 протонами, 6 нейтронами и 6 электронами каждый.Принципиальное различие между графитом и алмазом состоит в том, что молекулы графита представляют собой плоские группы атомов углерода, а молекулы алмаза представляют собой тетраэдрические (пирамидальные) группы атомов углерода.

Преднамеренное введение примесей в собственный полупроводник с целью изменения его электрических, оптических и структурных свойств называется легированием. Если атомы углерода присоединяются к другим типам атомов с образованием соединений, электрическая проводимость снова изменяется.Карбид кремния, соединение элементов кремния и углерода, демонстрирует нелинейное поведение: его электрическое сопротивление уменьшается с увеличением приложенного напряжения! Углеводородные соединения (например, молекулы масел), как правило, очень хорошие изоляторы. Как видите, простой подсчет валентных электронов в атоме — плохой индикатор электропроводности вещества.

Все металлические элементы являются хорошими проводниками электричества благодаря способу связи атомов друг с другом.Электроны атомов, составляющих массу металла, настолько раскованы в своих допустимых энергетических состояниях, что свободно перемещаются между различными ядрами в веществе, легко мотивируемые любым электрическим полем. Фактически, электроны настолько подвижны, что иногда ученые называют их электронным газом или даже электронным морем, в котором покоятся атомные ядра. Эта подвижность электронов объясняет некоторые из других общих свойств металлов: хорошую теплопроводность, пластичность и пластичность (легко формуются в различные формы) и блестящую поверхность в чистом виде.

К счастью, физика, лежащая в основе всего этого, в основном не имеет отношения к нашим целям. Достаточно сказать, что некоторые материалы являются хорошими проводниками, некоторые — плохими проводниками, а некоторые находятся между ними. На данный момент достаточно просто понять, что эти различия определяются конфигурацией электронов вокруг составляющих атомов материала.

Важным шагом на пути к тому, чтобы электричество соответствовало нашим требованиям, является возможность прокладывать пути для прохождения тока с контролируемым сопротивлением.Также жизненно важно, чтобы мы могли предотвратить протекание тока там, где мы этого не хотим, с помощью изоляционных материалов. Однако не все проводники и изоляторы одинаковы. Нам необходимо понимать некоторые характеристики обычных проводников и изоляторов и уметь применять эти характеристики в конкретных приложениях.

Почти все проводники обладают определенным измеримым сопротивлением (особые типы материалов, называемые сверхпроводниками, не обладают абсолютно никаким электрическим сопротивлением, но это не обычные материалы, и они должны храниться в особых условиях, чтобы быть сверхпроводящими).Обычно мы предполагаем, что сопротивление проводников в цепи равно нулю, и ожидаем, что ток проходит через них, не вызывая заметного падения напряжения. В действительности, однако, почти всегда будет падение напряжения на (нормальных) проводящих путях электрической цепи, хотим мы, чтобы там было падение напряжения или нет:

Рисунок 11.1

Чтобы рассчитать, какими будут эти падения напряжения в какой-либо конкретной цепи, мы должны иметь возможность определить сопротивление обычного провода, зная размер и диаметр провода.В некоторых из следующих разделов этой главы будут рассмотрены подробности этого.

  • Электропроводность материала определяется конфигурацией электронов в атомах и молекулах этого материала (группы связанных атомов).
  • Все обычные проводники в той или иной степени обладают сопротивлением.
  • Ток, протекающий по проводнику с (любым) сопротивлением, вызовет некоторое падение напряжения по длине этого проводника.

Это должно быть здравым смыслом, что жидкость течет по трубам большого диаметра легче, чем по трубам малого диаметра (если вам нужна практическая иллюстрация, попробуйте пить жидкость через соломинку разного диаметра).Тот же общий принцип действует для потока электронов через проводники: чем шире площадь поперечного сечения (толщина) проводника, тем больше места для протекания электронов и, следовательно, тем легче возникает поток (меньшее сопротивление). .

Два основных вида электрического провода: одножильный и многожильный

Электрический провод обычно имеет круглое поперечное сечение (хотя есть некоторые уникальные исключения из этого правила) и бывает двух основных разновидностей: одножильный и многожильный.Сплошная медная проволока — это так, как звучит: одна сплошная медная жила по всей длине провода. Многожильный провод состоит из более мелких жил сплошного медного провода, скрученных вместе, чтобы сформировать единый провод большего размера. Самым большим преимуществом многожильного провода является его механическая гибкость, способность выдерживать многократное изгибание и скручивание намного лучше, чем сплошная медь (которая со временем склонна к усталости и ломается). 2 [/ латекс]

[латекс] = (3.2 [/ латекс]

Расчет круговой площади провода в миле

Однако электрики и другие лица, часто озабоченные размером провода, используют другую единицу измерения площади, специально разработанную для круглого сечения провода. Эта специальная единица называется круговой мил (иногда сокращенно смил). Единственная цель наличия этой специальной единицы измерения состоит в том, чтобы исключить необходимость использования коэффициента π (3,1415927 …) в формуле для вычисления площади, а также необходимости вычислять радиус провода, когда вам задан диаметр.2 [/ латекс]

Поскольку это единица измерения площади, математическая степень 2 все еще действует (удвоение ширины круга всегда увеличивает его площадь в четыре раза, независимо от того, какие единицы измерения используются, или если ширина этого круга выражается в терминах радиуса или диаметра). Чтобы проиллюстрировать разницу между измерениями в квадратных милях и измерениями в круглых милах, я сравню круг с квадратом, показывая площадь каждой формы в обеих единицах измерения:

Рисунок 11.4

А для провода другого размера:

Рисунок 11.5

Очевидно, круг заданного диаметра имеет меньшую площадь поперечного сечения, чем квадрат ширины и высоты, равный диаметру круга: обе единицы измерения площади отражают это. Однако должно быть ясно, что единица «квадратный мил» действительно предназначена для удобного определения площади квадрата, в то время как «круговой мил» адаптирован для удобного определения площади круга: соответствующую формулу для каждого проще работать с.Следует понимать, что обе единицы действительны для измерения площади формы, независимо от того, какой формы она может быть. Преобразование между круглыми милами и квадратными милами представляет собой простое соотношение: на каждые 4 круглых мила приходится π (3,1415927 …) квадратных милов.

Измерение площади поперечного сечения провода с помощью калибра

Другой мерой площади поперечного сечения провода является калибр. Шкала датчика основана на целых числах, а не на дробных или десятичных дюймах. Чем больше номер калибра, тем тоньше провод; чем меньше номер калибра, тем толще проволока.Для тех, кто знаком с ружьями, эта обратно пропорциональная шкала измерения должна показаться знакомой.

Таблица в конце этого раздела приравнивает калибр к диаметру в дюймах, круглые милы и квадратные дюймы для сплошной проволоки. Провода большего диаметра достигают конца общей шкалы калибра (которая, естественно, достигает максимума, равного 1), и представлены серией нулей. «3/0» — это еще один способ представления «000», который произносится как «тройной дол». Опять же, тем, кто знаком с ружьями, следует признать терминологию, как бы странно это ни звучало.Что еще больше усложняет ситуацию, в мире существует более одного «стандарта» калибра. Для определения размеров электрических проводов предпочтительной системой измерения является американский калибр проводов (AWG), также известный как калибр Брауна и Шарпа (B&S). В Канаде и Великобритании британский стандартный калибр проводов (SWG) является официальной системой измерения электрических проводов. В мире существуют другие системы калибровки проволоки для классификации диаметра проволоки, такие как калибр для стальной проволоки Stubs и калибр для стальной музыкальной проволоки (MWG), но эти системы измерения применимы к неэлектрическим проводам.

Система измерения American Wire Gauge (AWG), несмотря на ее странности, была разработана с целью: на каждые три шага на шкале калибра площадь провода (и вес на единицу длины) примерно удваивается. Это удобное правило, которое следует помнить при приблизительной оценке диаметра проволоки!

Для очень больших размеров проволоки (толще 4/0) от системы калибра проволоки обычно отказываются для измерения площади поперечного сечения в тысячах круглых мил (MCM), заимствуя старую римскую цифру «M» для обозначения числа, кратного « тысяча »перед« CM »для« круговых мил.В следующей таблице сечения проводов не указаны размеры, превышающие калибр 4/0, потому что сплошной медный провод такого размера становится непрактичным. Вместо этого отдается предпочтение многопроволочной конструкции.

Таблица проводов для сплошных круглых медных проводников

Размер Диаметр Площадь поперечного сечения Масса
AWG дюймов cir. мил кв. Дюймов фунтов / 1000 футов
4/0 0.4600 211 600 0,1662 640,5
3/0 0,4096 167 800 0,1318 507,9
2/0 0,3648 133,100 0,1045 402,8
1/0 0,3249 105 500 0,08289 319,5
1 0,2893 83 690 0.06573 253,5
2 0,2576 66,370 0,05213 200,9
3 0,2294 52 630 0,04134 159,3
4 0,2043 41 740 0,03278 126,4
5 0,1819 33 100 0,02600 100,2
6 0.1620 26 250 0,02062 79,46
7 0,1443 20 820 0,01635 63,02
8 0,1285 16 510 0,01297 49,97
9 0,1144 13 090 0,01028 39,63
10 0,1019 10,380 0,008155 31.43
11 0,09074 8 234 0,006467 24,92
12 0,08081 6 530 0,005129 19,77
13 0,07196 5 178 0,004067 15,68
14 0,06408 4,107 0,003225 12,43
15 0.05707 3 257 0,002558 9,858
16 0,05082 2,583 0,002028 7,818
17 0,04526 2 048 0,001609 6.200
18 0,04030 1,624 0,001276 4,917
19 0,03589 1,288 0.001012 3,899
20 0,03196 1 022 0,0008023 3,092
21 0,02846 810,1 0,0006363 2.452
22 0,02535 642,5 0,0005046 1,945
23 0,02257 509,5 0,0004001 1,542
24 0.02010 404,0 0,0003173 1,233
25 0,01790 320,4 0,0002517 0,9699
26 0,01594 254,1 0,0001996 0,7692
27 0,01420 201,5 0,0001583 0,6100
28 0,01264 159,8 0.0001255 0,4837
29 0,01126 126,7 0,00009954 0,3836
30 0,01003 100,5 0,00007894 0,3042
31 0,008928 79,70 0,00006260 0,2413
32 0,007950 63,21 0,00004964 0.1913
33 0,007080 50,13 0,00003937 0,1517
34 0,006305 39,75 0,00003122 0,1203
35 0,005615 31,52 0,00002476 0,09542
36 0,005000 25,00 0,00001963 0,07567
37 0.004453 19,83 0,00001557 0,06001
38 0,003965 15,72 0,00001235 0,04759
39 0,003531 12,47 0,000009793 0,03774
40 0,003145 9,888 0,000007766 0,02993
41 0,002800 7.842 0,000006159 0,02374
42 0,002494 6,219 0,000004884 0,01882
43 0,002221 4,932 0,000003873 0,01493

Для некоторых приложений с сильным током требуются провода сечением, превышающим практический предел размера круглого провода. В этих случаях в качестве проводников используются толстые шины из твердого металла, называемые сборными шинами.Шины обычно изготавливаются из меди или алюминия и чаще всего неизолированы. Они физически поддерживаются вдали от каркаса или конструкции, удерживающей их, с помощью опорных изоляторов. Хотя квадратное или прямоугольное поперечное сечение очень распространено для формы шин, используются также и другие формы. Площадь поперечного сечения сборных шин обычно измеряется в круглых милах (даже для квадратных и прямоугольных шин!), Скорее всего, для удобства возможности напрямую приравнять размер шины к круглому проводу.

  • Ток течет по проводам большого диаметра легче, чем по проводам малого диаметра, из-за большей площади поперечного сечения, по которой они могут двигаться.
  • Вместо того, чтобы измерять небольшие размеры проволоки в дюймах, часто используется единица измерения «мил» (1/1000 дюйма).
  • Площадь поперечного сечения провода может быть выражена в квадратных единицах (квадратные дюймы или квадратные милы), круговые милы или «калибровочная» шкала.
  • При вычислении площади квадратной единицы для круглого провода используется формула площади круга:
  • A = πr 2 (квадратные единицы)
  • Расчет площади круглой проволоки в миле для круглой проволоки намного проще из-за того, что единица измерения «круговой мил» была выбрана именно для этой цели: чтобы исключить факторы «пи» и d / 2 (радиус) в формула.
  • A = d 2 (круглые единицы)
  • На каждые 4 круговых мил приходится π (3,1416) квадратных милов.
  • Калибровочная система размеров проводов основана на целых числах, большие числа представляют провода меньшей площади и наоборот. Провода толщиной более 1 калибра обозначаются нулями: 0, 00, 000 и 0000 (произносятся «одинарная», «двойная», «тройная» и «четверная».
  • Провода очень большого диаметра рассчитываются в тысячах круглых милов (MCM), что типично для шин и проводов сечением выше 4/0.
  • Шины — это сплошные шины из меди или алюминия, используемые в конструкции сильноточных цепей. Соединения, выполняемые с шинами, обычно являются сварными или болтовыми, а шины часто голые (неизолированные) и поддерживаются вдали от металлических каркасов за счет использования изолирующих стоек.

Чем меньше площадь поперечного сечения любого данного провода, тем больше сопротивление для любой данной длины при прочих равных условиях. Провод с большим сопротивлением будет рассеивать большее количество тепловой энергии при любом заданном значении тока, мощность которого равна P = I 2 R.

Рассеиваемая мощность из-за сопротивления проводника проявляется в виде тепла, и чрезмерное тепло может повредить провод (не говоря уже об объектах рядом с проводом), особенно с учетом того факта, что большинство проводов изолировано пластиковым или резиновым покрытием. , который может плавиться и гореть. Таким образом, тонкие провода выдерживают меньший ток, чем толстые, при прочих равных условиях. Предел пропускной способности проводника известен как его допустимая нагрузка.

В первую очередь из соображений безопасности определенные стандарты для электропроводки были установлены в Соединенных Штатах и ​​указаны в Национальном электротехническом кодексе (NEC).В типичных таблицах допустимой нагрузки проводов NEC указаны допустимые максимальные токи для различных размеров и применений проводов. Хотя точка плавления меди теоретически накладывает ограничение на допустимую нагрузку на провод, материалы, обычно используемые для изоляции проводов, плавятся при температурах намного ниже точки плавления меди, и поэтому практические значения допустимой нагрузки основаны на тепловых пределах изоляции. Падение напряжения в результате чрезмерного сопротивления проводов также является фактором при выборе размеров проводников для их использования в цепях, но это соображение лучше оценивать с помощью более сложных средств (которые мы рассмотрим в этой главе).Таблица, полученная из списка NEC, показана, например:

Таблица 11.2 Сенсорность медных проводников на открытом воздухе при 30 градусах Цельсия

Изоляция: RUW, Т THW, THWN FEP, FEPB
Тип: TW RUH THHN, XHHW
Размер Текущий рейтинг Текущий рейтинг Текущий рейтинг
AWG при 60 градусах Цельсия при 75 градусах Цельсия при 90 градусах Цельсия
20 * 9 * 12.5
19 * 13 18
16 * 18 24
14 25 30 35
12 30 35 40
10 40 50 55
8 60 70 80
6 80 95 105
4 105 125 140
2 140 170 190
1 165 195 220
1/0 195 230 260
2/0 225 265 300
3/0 260 310 350
4/0 300 360 405

* = оценочные значения; как правило, провода малого диаметра не производятся с изоляцией такого типа

.

Обратите внимание на существенные различия в допустимой нагрузке между проводами одинакового сечения с разными типами изоляции.Это связано, опять же, с тепловыми пределами (60 °, 75 °, 90 °) каждого типа изоляционного материала.

Эти значения допустимой нагрузки указаны для медных проводов в «свободном воздухе» (максимальная типичная циркуляция воздуха), в отличие от проводов, помещенных в кабелепровод или лотки для проводов. Как вы заметите, в таблице не указаны значения силы тока для проводов малого диаметра. Это связано с тем, что NEC занимается в первую очередь силовой проводкой (большие токи, большие провода), а не проводами, обычными для слаботочных электронных устройств.

Последовательности букв, используемые для обозначения типов проводников, имеют значение, и эти буквы обычно относятся к свойствам изолирующего слоя (слоев) проводника. Некоторые из этих букв символизируют индивидуальные свойства провода, а другие — просто аббревиатуры. Например, буква «Т» сама по себе означает «термопластик» в качестве изоляционного материала, как в «TW» или «THHN». Однако трехбуквенная комбинация «MTW» является аббревиатурой для Machine Tool Wire, типа провода, изоляция которого сделана так, чтобы быть гибкой для использования в машинах, испытывающих значительное движение или вибрацию.

Изоляционный материал

  • C = Хлопок
  • FEP = фторированный этиленпропилен
  • MI = Минерал (оксид магния)
  • PFA = перфторалкокси
  • R = резина (иногда неопрен)
  • S = Силиконовая «резина»
  • SA = силикон-асбест
  • T = термопласт
  • TA = Термопласт-асбест
  • TFE = политетрафторэтилен («тефлон»)
  • X = сшитый синтетический полимер
  • Z = модифицированный этилентетрафторэтилен

Тепловая нагрузка

  • H = 75 градусов Цельсия
  • HH = 90 градусов Цельсия

Наружное покрытие («Оболочка»)

Особые условия обслуживания

  • U = Подземный
  • Вт = мокрый
  • -2 = 90 градусов Цельсия и влажная

Таким образом, проводник THWN имеет термопластичную изоляцию, термостойкость до 75 ° Цельсия, рассчитан на работу во влажных условиях и поставляется с нейлоновой внешней оболочкой.

Буквенные коды, подобные этим, используются только для проводов общего назначения, например, используемых в домашних условиях и на предприятиях. Для приложений с высокой мощностью и / или тяжелых условий эксплуатации сложность технологии проводов не поддается классификации по нескольким буквенным кодам. Проводники воздушных линий электропередачи обычно изготавливаются из чистого металла и подвешиваются к опорам с помощью стеклянных, фарфоровых или керамических опор, известных как изоляторы. Даже в этом случае фактическая конструкция провода, способного выдерживать физические нагрузки, как статические (собственный вес), так и динамические (ветер) нагрузки, может быть сложной, с несколькими слоями и разными типами металлов, намотанными вместе, чтобы сформировать единый проводник.Большие подземные силовые провода иногда изолируются бумагой, а затем заключаются в стальную трубу, заполненную сжатым азотом или маслом, чтобы предотвратить проникновение воды. Такие проводники требуют вспомогательного оборудования для поддержания давления жидкости по всей трубе.

Другие изоляционные материалы находят применение в малых масштабах. Например, провод небольшого диаметра, используемый для изготовления электромагнитов (катушек, создающих магнитное поле из потока электронов), часто изолируют тонким слоем эмали.Эмаль является прекрасным изоляционным материалом и очень тонкая, что позволяет наматывать множество «витков» проволоки на небольшом пространстве.

  • Сопротивление провода создает тепло в рабочих цепях. Это тепло представляет собой потенциальную опасность возгорания.
  • Тонкие провода имеют более низкий допустимый ток («допустимую нагрузку»), чем толстые провода, из-за их большего сопротивления на единицу длины и, следовательно, большего тепловыделения на единицу тока.
  • Национальный электротехнический кодекс (NEC) определяет допустимую силу тока для силовой проводки в зависимости от допустимой температуры изоляции и применения проводов.

Расчет сопротивления проводов

Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания. Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:

Если нагрузка в указанной выше цепи не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если подсчитать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:

[латекс] R = \ frac {E} {I} [/ латекс]

[латекс] = \ frac {5V} {25A} [/ латекс]

[латекс] R = 0,2 Ом [/ латекс]

Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для определенного размера и длины провода? Для этого нам понадобится другая формула:

[латекс] \ tag {11.2} \ text {R} = \ rho \ ell / \ text {A} [/ latex]

Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»). Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой).Удельное сопротивление является константой для типа рассчитываемого материала проводника.

Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице. Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):

Таблица 11.3 Удельное сопротивление при 20 градусах Цельсия

Материал Элемент / Сплав (Ом-смил / фут) (мкОм-см)
нихром Сплав 675 112.2
Нихром В Сплав 650 108,1
Манганин Сплав 290 48,21
Константан Сплав 272,97 45,38
Сталь * Сплав 100 16,62
Платина Элемент 63,16 10,5
Утюг Элемент 57.81 9,61
Никель Элемент 41,69 6,93
цинк Элемент 35,49 5,90
молибден Элемент 32,12 5,34
Вольфрам Элемент 31,76 5,28
Алюминий Элемент 15,94 2.650
Золото Элемент 13,32 2,214
Медь Элемент 10,09 1.678
Серебро Элемент 9,546 1,587

* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%

Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы ожидаем использовать в формуле сопротивления ( [латекс] \ text {R} = \ rho \ ell / \ text {A} [/ latex]).В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.

Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут (1,66243 x 10 ). -7 Ом-см на Ом-см-дюйм). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9.61 мкОм-см, что можно представить как 9,61 x 10 -6 Ом-см.

При использовании единицы измерения удельного сопротивления Ом-метр в формуле [латекс] \ text {R} = \ rho \ ell / \ text {A} [/ latex] длина должна быть в метрах, а площадь — в квадратные метры. При использовании единицы Ом-сантиметр (Ом-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.

Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см).Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.

Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов.Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:

[латекс] R = ρ \ frac {e} {A} [/ латекс]

Решение для области (A):

[латекс] A = ρ \ frac {e} {R} [/ латекс]

[латекс] = (10,09 Ом-см / фут) (\ frac {2300feet} {0,2 Ом}) [/ латекс]

[латекс] = 116 035 см [/ латекс]

Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, в то время как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мала. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медного провода на открытом воздухе, достаточно провода калибра 14 (если речь идет о недопущении возгорания). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.

Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы по-прежнему используем медь в качестве материала для проволоки (хороший выбор, если только мы не очень богаты и не можем позволить себе 4600 футов серебряной проволоки 14-го калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см / фут:

[латекс] R = ρ \ frac {e} {A} [/ латекс]

[латекс] = (10,09 Ом-см / фут) (\ frac {2300feet} {4107}) [/ латекс]

[латекс] = 5,651 Ом [/ латекс]

Помните, что это 5,651 Ом на 2300 футов медного провода 14-го калибра, и что у нас есть два участка по 2300 футов во всей цепи, так что каждый кусок провода в цепи имеет 5.651 Ом сопротивления:

Полное сопротивление проводов нашей схемы составляет 2 раза 5,651 или 11,301 Ом. К сожалению, это слишком большое сопротивление, чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах. 2 [/ латекс]

Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см).2}) [/ латекс]

[латекс] = 27,604 мкОм [/ латекс]

Как видите, огромная толщина шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.

Процедура определения сопротивления шины принципиально не отличается от процедуры определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.

  • Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
  • Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
  • Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система). Коэффициент преобразования между этими двумя единицами равен 1.66243 x 10 -9 Ом-метров на Ом-см-дюйм / фут или 1,66243 x 10 -7 Ом-см на Ом-см-дюйм / фут.
  • Если падение напряжения в цепи критично, перед выбором сечения проводов необходимо произвести точный расчет сопротивления проводов.

Вы могли заметить в таблице удельных сопротивлений, что все значения указаны для температуры 20 ° C. Если вы подозревали, что это означает, что удельное сопротивление материала может изменяться с температурой, вы были правы!

Значения сопротивления проводников при любой температуре, отличной от стандартной (обычно указываемой на уровне 20 Цельсия) в таблице удельного сопротивления, должны определяться по еще одной формуле:

[латекс] R = R_ {ref} [1 + α (T-T_ {ref})] \ tag {11.3} [/ латекс]

Где,

[латекс] R = \ text {Сопротивление проводимости при температуре «T»} [/ латекс]

[латекс] R_ {ref} = \ text {Сопротивление проводимости при эталонной температуре} [/ латекс]

[латекс] T_ {ref} = \ text {обычно} 20 ° C \ text {, но иногда} 0 ° C [/ латекс]

[латекс] α = \ text {Температурный коэффициент сопротивления материала проводника} [/ латекс]

[латекс] \ text {T = Температура проводника в градусах Цельсия} [/ латекс]

[латекс] T_ {ref} = \ text {Эталонная температура, при которой указана α для проводника} [/ латекс]

Константа «альфа» (α) известна как температурный коэффициент сопротивления и символизирует коэффициент изменения сопротивления на градус изменения температуры.Так же, как все материалы обладают определенным удельным сопротивлением (при 20 ° C), они также изменяют сопротивление в зависимости от температуры на определенную величину. Для чистых металлов этот коэффициент является положительным числом, что означает, что сопротивление увеличивается с повышением температуры. Для элементов углерода, кремния и германия этот коэффициент является отрицательным числом, что означает, что сопротивление уменьшается с повышением температуры. Для некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает, что сопротивление практически не изменяется при изменении температуры (хорошее свойство, если вы хотите построить прецизионный резистор из металлической проволоки!).В следующей таблице приведены температурные коэффициенты сопротивления для нескольких распространенных металлов, как чистых, так и легированных:

Таблица 11.4 Температурные коэффициенты сопротивления при 20 градусах Цельсия

Материал Элемент / Сплав «альфа» на градус Цельсия
Никель Элемент 0,005866
Утюг Элемент 0,005671
молибден Элемент 0.004579
Вольфрам Элемент 0,004403
Алюминий Элемент 0,004308
Медь Элемент 0,004041
Серебро Элемент 0,003819
Платина Элемент 0,003729
Золото Элемент 0,003715
цинк Элемент 0.003847
Сталь * Сплав 0,003
нихром Сплав 0,00017
Нихром В Сплав 0,00013
Манганин Сплав +/- 0,000015
Константан Сплав -0,000074

* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%

Давайте посмотрим на пример схемы, чтобы увидеть, как температура может повлиять на сопротивление провода и, следовательно, на характеристики схемы:

Эта схема имеет полное сопротивление проводов (провод 1 + провод 2) 30 Ом при стандартной температуре.Составив таблицу значений напряжения, тока и сопротивления получаем:

При 20 ° C мы получаем 12,5 В на нагрузке и всего 1,5 В (0,75 + 0,75) падаем на сопротивление провода. Если бы температура поднялась до 35 ° по Цельсию, мы могли бы легко определить изменение сопротивления для каждого отрезка провода. Предполагая использование медной проволоки (α = 0,004041), получаем:

[латекс] R = R_ {ref} [1 + α (T-T_ {ref})] [/ латекс]

[латекс] = (15 Ом) [1 + 0,004041 (35 ° -20 °)] [/ латекс]

[латекс] = 15.909 Ом [/ латекс]

Пересчитав значения нашей схемы, мы увидим, какие изменения принесет это повышение температуры:

Как видите, в результате повышения температуры напряжение на нагрузке упало (с 12,5 до 12,42 В), а на проводах увеличилось (с 0,75 до 0,79 В). Хотя изменения могут показаться незначительными, они могут быть значительными для линий электропередач, протянувшихся на несколько километров между электростанциями и подстанциями, подстанциями и нагрузками.Фактически, электроэнергетические компании часто должны учитывать изменения сопротивления линии в результате сезонных колебаний температуры при расчете допустимой нагрузки системы.

  • Большинство проводящих материалов изменяют удельное сопротивление при изменении температуры. Вот почему значения удельного сопротивления всегда указываются для стандартной температуры (обычно 20 или 25 ° C).
  • Коэффициент изменения сопротивления на градус Цельсия изменения температуры называется температурным коэффициентом сопротивления.Этот коэффициент представлен греческой строчной буквой «альфа» (α).
  • Положительный коэффициент для материала означает, что его сопротивление увеличивается с повышением температуры. Чистые металлы обычно имеют положительный температурный коэффициент сопротивления. Коэффициенты, приближающиеся к нулю, могут быть получены путем легирования некоторых металлов.
  • Отрицательный коэффициент для материала означает, что его сопротивление уменьшается с повышением температуры. Полупроводниковые материалы (углерод, кремний, германий) обычно имеют отрицательные температурные коэффициенты сопротивления.

Атомы в изоляционных материалах имеют очень плотно связанные электроны, очень хорошо сопротивляющиеся свободному потоку электронов. Однако изоляторы не могут выдерживать неопределенное количество напряжения. При приложении достаточного напряжения любой изолирующий материал в конечном итоге поддастся электрическому «давлению», и тогда возникнет ток. Однако, в отличие от ситуации с проводниками, где ток линейно пропорционален приложенному напряжению (при фиксированном сопротивлении), ток через изолятор весьма нелинейен: при напряжениях ниже определенного порога ток практически не протекает, но если приложенное напряжение превышает это пороговое напряжение (известное как напряжение пробоя или диэлектрическая прочность) приведет к выбросу тока.

Диэлектрическая прочность — это напряжение, необходимое для пробоя диэлектрика, то есть для проталкивания тока через изолирующий материал. После диэлектрического пробоя материал может больше не вести себя как изолятор, поскольку молекулярная структура изменилась в результате нарушения. Обычно происходит локальный «прокол» изолирующей среды, по которому при пробое протекал ток.

Толщина изоляционного материала играет роль в определении его напряжения пробоя.Удельная диэлектрическая прочность иногда указывается в вольтах на мил (1/1000 дюйма) или киловольтах на дюйм (эти две единицы эквивалентны), но на практике было обнаружено, что связь между напряжением пробоя и толщиной не существует. точно линейный. Изолятор в три раза толще имеет электрическую прочность чуть менее чем в три раза. Однако для приблизительной оценки допустимы значения вольт на толщину.

От

Материал * Диэлектрическая прочность (кВ / дюйм)
вакуум 20
Воздух от 20 до 75
Фарфор от 40 до 200
Парафиновый воск от 200 до 300
Трансформаторное масло 400
Бакелит 300 до 550
Резина 450 до 700
Шеллак 900
Бумага 1250
тефлон 1500
Стекло от 2000 до 3000
Слюда 5000

* = Перечисленные материалы специально подготовлены для электрического использования.

  • При достаточно высоком приложенном напряжении электроны могут быть освобождены от атомов изоляционных материалов, в результате чего через этот материал будет протекать ток.
  • Минимальное напряжение, необходимое для «разрушения» изолятора путем пропускания через него тока, называется напряжением пробоя или диэлектрической прочностью.
  • Чем толще кусок изоляционного материала, тем выше напряжение пробоя при прочих равных условиях.
  • Удельная диэлектрическая прочность обычно измеряется в одной из двух эквивалентных единиц: вольт на мил или киловольт на дюйм.

9.3 Удельное сопротивление и сопротивление — University Physics Volume 2

Задачи обучения

К концу этого раздела вы сможете:

  • Разница между сопротивлением и удельным сопротивлением
  • Определите термин проводимость
  • Опишите электрический компонент, известный как резистор
  • Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением.
  • Укажите взаимосвязь между удельным сопротивлением и температурой

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление.Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле E → E →, и заряды в проводнике ощущают силу, создаваемую электрическим полем. Полученная плотность тока J → J → зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как

где σσ — удельная электропроводность. Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность σ = J / Eσ = J / E, единицы равны

σ = [Дж] [Э] = А / м2В / м = АВ · м. σ = [Дж] [Э] = А / м2В / м = АВ · м.

Здесь мы определяем единицу, называемую ом с греческим символом омега в верхнем регистре, ΩΩ.Устройство названо в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. ΩΩ используется, чтобы избежать путаницы с числом 0. Один Ом равен одному вольту на ампер: 1Ω = 1V / A1Ω = 1V / A. Таким образом, единицы электропроводности равны (Ом · м) -1 (Ом · м) -1.

Электропроводность — это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символ удельного сопротивления — строчная греческая буква ро, ρρ, а удельное сопротивление — величина, обратная удельной электропроводности:

.

Единицей измерения удельного сопротивления в системе СИ является ом-метр (Ом · м) (Ом · м). Мы можем определить удельное сопротивление через электрическое поле и плотность тока,

Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем. Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением.Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 9.1 приведены значения удельного сопротивления и проводимости для различных материалов.

Материал Электропроводность, σσ
(Ом · м) -1 (Ом · м) -1
Удельное сопротивление, ρρ
(Ом · м) (Ом · м)
Температура
Коэффициент, αα
(° C) -1 (° C) -1
Проводники
Серебро 6,29 × 1076.29 × 107 1,59 × 10–81,59 × 10–8 0,0038
Медь 5,95 × 1075,95 × 107 1,68 × 10–81,68 × 10–8 0,0039
Золото 4,10 × 1074,10 × 107 2,44 × 10–82,44 × 10–8 0,0034
Алюминий 3,77 × 1073,77 × 107 2,65 × 10–82,65 × 10–8 0,0039
Вольфрам 1,79 × 1071,79 × 107 5.60 × 10–85,60 × 10–8 0,0045
Утюг 1,03 × 1071,03 × 107 9,71 × 10–89,71 × 10–8 0,0065
Платина 0,94 × 1070,94 × 107 10,60 × 10-8 10,60 × 10-8 0,0039
Сталь 0,50 × 1070,50 × 107 20,00 × 10–820,00 × 10–8
Свинец 0,45 × 1070,45 × 107 22,00 × 10–822,00 × 10–8
Манганин (сплав Cu, Mn, Ni) 0.21 × 1070,21 × 107 48,20 × 10-848,20 × 10-8 0,000002
Константан (сплав Cu, Ni) 0,20 × 1070,20 × 107 49,00 × 10–849,00 × 10–8 0,00003
Меркурий 0,10 × 1070,10 × 107 98,00 × 10-898,00 × 10-8 0,0009
Нихром (сплав Ni, Fe, Cr) 0,10 × 1070,10 × 107 100,00 × 10-8 100,00 × 10-8 0,0004
Полупроводники [1]
Углерод (чистый) 2.86 × 1042,86 × 104 3,50 × 10–53,50 × 10–5 −0,0005
Углерод (2,86–1,67) × 10–6 (2,86–1,67) × 10–6 (3,5-60) × 10-5 (3,5-60) × 10-5 −0,0005
Германий (чистый) 600 × 10−3600 × 10−3 -0,048
Германий (1-600) × 10-3 (1-600) × 10-3 -0,050
Кремний (чистый) 2300 −0.075
Кремний 0,1−23000,1−2300 -0,07
Изоляторы
Янтарь 2,00 × 10–152,00 × 10–15 5 × 10145 × 1014
Стекло 10−9−10−1410−9−10−14 109−1014109−1014
Люцит <10-13 <10-13> 1013> 1013
Слюда 10-11-10-1510-11-10-15 1011−10151011−1015
Кварц (плавленый) 1.33 × 10–181,33 × 10–18 75 × 101675 × 1016
Резина (твердая) 10-13-10-16 10-13-10-16 1013−10161013−1016
Сера 10-15 10-15 10151015
Тефлон TM <10-13 <10-13> 1013> 1013
Дерево 10-8-10-1110-8-10-11 108−1011108−1011

Таблица 9.1 Удельное сопротивление и проводимость различных материалов при 20 ° C [1] Значения сильно зависят от количества и типов примесей.

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться.Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Проверьте свое понимание 9,5

Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам. Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов.Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальное значение растягивающего напряжения, которое он может выдержать перед разрушением. Медь имеет высокий предел прочности на разрыв, 2 × 108 Нм22 × 108 Нм2. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью.Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем преимущества и недостатки?

Температурная зависимость удельного сопротивления

Вернувшись к таблице 9.1, вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры.Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

ρ≈ρ0 [1 + α (T − T0)], ρ≈ρ0 [1 + α (T − T0)],

9,7

где ρρ — удельное сопротивление материала при температуре T, αα — температурный коэффициент материала, а ρ0ρ0 — удельное сопротивление при T0T0, обычно принимаемое как T0 = 20.00 ° CT0 = 20,00 ° C.

Отметим также, что температурный коэффициент αα отрицателен для полупроводников, перечисленных в Таблице 9.1, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента.Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Для расчета сопротивления рассмотрим участок проводящего провода с площадью поперечного сечения A, длиной L и удельным сопротивлением ρ.ρ. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов ΔVΔV (Рисунок 9.13). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно E → = ρJ → E → = ρJ →.

Рисунок 9.13 Потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения A и длиной L.

Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, E = V / LE = V / L, а величина плотности тока равна току, деленному на поперечную площадь сечения, J = I / A.J = I / A. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

E = ρJVL = ρIAV = (ρLA) I.E = ρJVL = ρIAV = (ρLA) I.

Сопротивление

Отношение напряжения к току определяется как сопротивление R:

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, разделенную на площадь:

R≡VI = ρLA.R≡VI = ρLA.

9,9

Единицей измерения сопротивления является ом, ΩΩ. Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. На рисунке 9.14 показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

Рисунок 9.14 Условные обозначения резистора, используемого в принципиальных схемах. (а) символ ANSI; (б) символ IEC.

Зависимость сопротивления от материала и формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L, изготовленный из материала с удельным сопротивлением ρρ (Рисунок 9.15). Сопротивление резистора R = ρLAR = ρLA.

Рис. 9.15. Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A. Его сопротивление протеканию тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Чаще всего для изготовления резистора используется углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода.Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 9.16.

Рисунок 9.16 Многие резисторы имеют вид, показанный на рисунке выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора.Третий цвет — множитель. Четвертый цвет обозначает допуск резистора. Показанный резистор имеет сопротивление 20 × 105 Ом ± 10% 20 × 105 Ом ± 10%.

Сопротивления варьируются на много порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более. Сопротивление сухого человека может составлять 105 Ом 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом10-5 Ом, а сверхпроводники вообще не имеют сопротивления при низких температурах.Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Пример 9,5

Плотность тока, сопротивление и электрическое поле для токоведущего провода

Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2,053 мм (калибр 12), по которому проходит ток I = 10 мА I = 10 мА.

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна A = 3.31 мм2, A = 3,31 мм2, а определение плотности тока J = IAJ = IA. Сопротивление можно найти, используя длину провода L = 5,00 м L = 5,00 м, площадь и удельное сопротивление меди ρ = 1,68 × 10–8 Ом · мρ = 1,68 × 10–8 Ом · м, где R = ρLAR = ρLA. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.

Решение

Сначала рассчитываем плотность тока:
J = IA = 10 · 10−3A3,31 · 10−6м2 = 3,02 · 103Am2. J = IA = 10 · 10−3A3,31 · 10−6м2 = 3,02 · 103Am2.

Сопротивление провода

R = ρLA = (1,68 × 10-8 Ом · м) 5.00 м3,31 × 10–6 м2 = 0,025 Ом. R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом.

Наконец, мы можем найти электрическое поле:

E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm. E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm.

Значение

Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Сопротивление объекта также зависит от температуры, поскольку R0R0 прямо пропорционально ρ.ρ. Для цилиндра мы знаем, что R = ρLAR = ρLA, поэтому, если L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и ρ.ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) ,

R = R0 (1 + αΔT) R = R0 (1 + αΔT)

9.10

— это температурная зависимость сопротивления объекта, где R0R0 — исходное сопротивление (обычно принимаемое равным 20,00 ° C) 20,00 ° C), а R — сопротивление после изменения температуры ΔT.ΔT. Цветовой код показывает сопротивление резистора при температуре T = 20,00 ° CT = 20,00 ° C.

Многие термометры основаны на влиянии температуры на сопротивление (рисунок 9.17). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рис. 9.17 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Пример 9.6

Расчет сопротивления

Хотя следует соблюдать осторожность при применении ρ = ρ0 (1 + αΔT), ρ = ρ0 (1 + αΔT) и R = R0 (1 + αΔT) R = R0 (1 + αΔT) для температурных изменений более 100 ° C 100 ° C , для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры.Вольфрамовая нить накала при 20 ° C20 ° C имеет сопротивление 0,350 Ом 0,350 Ом. Каким будет сопротивление при повышении температуры до 2850 ° C 2850 ° C?

Стратегия

Это прямое применение R = R0 (1 + αΔT) R = R0 (1 + αΔT), поскольку исходное сопротивление нити накала задается как R0 = 0,350ΩR0 = 0,350Ω, а изменение температуры составляет ΔT = 2830 ° CΔT. = 2830 ° С.

Решение

Сопротивление более горячей нити накала R получается путем ввода известных значений в приведенное выше уравнение:
R = R0 (1 + αΔT) = (0,350 Ом) [1+ (4.5 × 10–3 ° C) (2830 ° C)] = 4,8 Ом. R = R0 (1 + αΔT) = (0,350 Ом) [1+ (4,5 × 10–3 ° C) (2830 ° C)] = 4.8 Ом.

Значение

Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накаливания достигнет рабочей температуры.

Проверьте свое понимание 9.6

Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Пример 9.7

Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом riri, окруженного вторым внешним концентрическим проводником с радиусом roro (рисунок 9.18). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L.

Рисунок 9.18 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия

Мы не можем напрямую использовать уравнение R = ρLAR = ρLA. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.

Решение

Сначала мы находим выражение для dR, а затем проинтегрируем от riri до roro,
dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

Проверьте свое понимание 9.7

Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников.Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Глубина кожи / Эффект кожи и калькулятор

Поскольку высокочастотные сигналы плохо проникают в хорошие проводники, сопротивление, связанное с проводником на этих высоких частотах, будет выше, чем сопротивление постоянному току. Этот эффект известен как скин-эффект, поскольку высокочастотный ток течет в тонком слое у поверхности проводника.Формула для определения эффективной глубины скин-слоя для проводника показана ниже.

Уравнение для расчета глубины скин-слоя или скин-эффекта медного проводника

для чистой меди В этом случае d — глубина скин-слоя (в м), f — интересующая частота (в Гц), m — проницаемость материала (м o , или 1,2566E-6 H / м для большинства материалов), s — проводимость материала (в Сименсах / м или 1 / r, где r — удельное сопротивление в Ом-м).

Диаграмма, показывающая эффективное сопротивление круглой проволоки за счет скин-эффекта

Если используется круглый провод с радиусом a, эффективное сопротивление провода можно рассчитать, как показано ниже, где l — длина провода, а другие переменные определены, как указано выше.

Уравнение для расчета эффективного сопротивления провода в зависимости от глубины скин-слоя

при a >> d

Приведенное выше уравнение применимо для тех случаев, когда глубина скин-слоя находится между 0 и радиусом проволоки a. Если глубина скин-слоя больше, чем радиус провода, то эквивалентное сопротивление провода переменному току не отличается от сопротивления постоянному току и просто определяется по стандартной формуле с использованием всей площади поперечного сечения провода. Когда частота приближается к нулю (dc), глубина скин-слоя становится бесконечной, а с увеличением частоты глубина скин-слоя становится все меньше и меньше.

В следующей таблице показано, как толщина скин-слоя изменяется в зависимости от материала проводника в качестве примера (чистая медь и чистый алюминий) для типичных частот импульсной мощности и согласования мощности в диапазоне от 1 кГц до 1 ГГц.

Частота (Гц) Глубина кожи в меди (см) Глубина кожи в алюминии (см)
1000 2.09E-1 2.68E-1
10 000 6.61E-2 8.46E-2
100 000 2.09E-2 2.68E-2
1 000 000 6.61E-3 8.46E-3
10 000 000 2.09E-3 2.68E-3
100 000 000 6.61E-4 8.46E-4
1 000 000 000 2.09E-4 2.68E-4

Калькулятор ниже можно использовать для определения глубины скин-слоя для данного сплава материала и рабочей частоты.Он также будет отображать удельное сопротивление, проводимость и проницаемость, принятые для выбранного материала. Рекомендуется, чтобы пользователи дважды проверяли эту информацию, поскольку удельное сопротивление материала может варьироваться в зависимости от точного состава, отпуска и т. Д. Выбранного сплава материала. Кредит за исходный код Javascript, используемый в калькуляторе, дан Рэю Аллену, у которого есть несколько подобных полезных калькуляторов на своем веб-сайте Pulsed Power Portal.


Направляйте запросы, комментарии и предложения [email protected]

Штанга

мм Лучший дизайн 10 м 32,8 фута Чистота 99,95 Диаметр проволоки из вольфрама W 0,5 мм Плотность черного вольфрама Круглый стержень Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень

Силовые и ручные инструменты Штанга мм Лучший дизайн 10 м 32,8 фута Чистота 99,95 Проволока из вольфрама W Диаметр 0,5 мм Черный вольфрамовый стержень с круглым стержнем Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень Резаки для проволочного троса
Штанга

мм Best Design 10м 32.8ft Purity 99.95 Диаметр проволоки из вольфрама W 0,5 мм Черная плотность Вольфрамовый круглый стержень Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень, 95 Вольфрам W Диаметр проволоки 0,5 мм Черная плотность, Таблица диаметров проволоки — вольфрамовый круглый стержень, чистый вольфрамовый стержень, Вольфрамовый стержень, платиновая проволока, мм стержень, металлический молибден, Lalana Co Ltd, лучший дизайн 10 м 32,8 фута Purity 99, черный вольфрамовый стержень с круглым стержнем Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень мм стержень Лучший дизайн 10 м 32.8ft Purity 99.95 Tungsten W Wire Диаметр 0,5 мм, Платиновая проволока, Mm стержень, Металлический молибден — -, Лучший дизайн 10m 32,8ft Purity 99,95 Вольфрам W Диаметр проволоки 0,5 мм Черный Плотность, Таблица диаметров проволоки — Вольфрамовый круглый стержень, Чистый Вольфрамовый стержень, вольфрамовый стержень. Круглый стержень Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень мм стержень Лучший дизайн 10 м 32,8 фута Чистота 99,95 Вольфрам W Диаметр проволоки 0,5 мм Черный вольфрам плотности.

  1. Home
  2. Электроинструмент и ручной инструмент
  3. Промышленный ручной инструмент
  4. Резаки
  5. Резаки для каната
  6. Стержень

  7. мм Best Design 10 м 32.8 футов Чистота 99,95 Диаметр проволоки вольфрама W 0,5 мм Черная плотность вольфрамового круглого стержня Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень

Мм стержень Лучший дизайн 10 м 32,8 фута Чистота 99,95 Вольфрам W Диаметр проволоки 0,5 мм Черный круглый стержень вольфрама Вольфрамовый стержень

таблицы диаметра проволоки стержня вольфрама металла молибдена платины чистый

Best Design 10 м 32,8 фута Чистота 99,95 Вольфрам W Диаметр проволоки 0,5 мм Плотность черного цвета, таблица диаметров проволоки — вольфрамовый круглый стержень, стержень из чистого вольфрама, вольфрамовый стержень, платиновая проволока.Пруток мм, металлический молибден — -.

Стержень

мм Лучший дизайн 10 м 32,8 фута Чистота 99,95 Вольфрам W Диаметр проволоки 0,5 мм Плотность черного вольфрама Круглый стержень Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень

Пруток мм Лучший дизайн 10 м 32,8 фута Чистота 99,95 Вольфрам W Диаметр проволоки 0,5 мм Черный вольфрамовый круглый стержень Платиновая проволока Металлический молибден Чистый вольфрамовый стержень Таблица диаметров проволоки Вольфрамовый стержень

Бесщеточная дрель, 20 В MAX LANNERET Компактная аккумуляторная дрель-шуруповерт 442 дюйма на фунт, 2 аккумулятора по 2000 мАч, быстрое зарядное устройство 2.0A, 19 + 3 настройки крутящего момента, 2-регулируемые скорости, светодиодная подсветка, наборы BMC, 20 шт. 220006 для плазменного резака MAX1250 Принадлежности для режущего инструмента из теллуровой меди, Промышленная машина для заклепки с заклепками, Пневматический инструмент для заклепок с коротким цилиндром, Инструмент для заклепок с пневматическим сердечником, ремонт автомобилей , Поставляется из США домой Ключ для тормозного суппорта с трещоткой , Авторемонтный инструмент для механического ремонта. AXZHYX Поручни для домашнего использования Перчатки для перчаток Толстые сварочные перчатки Устойчивые к порезам огнестойкость Изоляция износа от огня Толщина изоляции Ножницы, 2540 шт., Метрический класс 10.9 НАБОР ГРУЗОВОЙ НИТИ МЯСОР с 40 отверстиями. 14R Сменный корпус из сыромятной кожи, размер 3 Thor. Резьбовой стержень из низкоуглеродистой стали 1-8×12 футов LC.10000812.ZP.DAR, OXA # 10 КРЕПЛЕНИЕ ДЛЯ ТОКАРНОЙ ТОКАРНОЙ И ОБРАБОТКИ ТОКАРНОЙ ИНСТРУМЕНТАЦИИ С ЧПУ 0XA 250-010. KF-25 Колено 90 градусов Вакуумные фитинги из нержавеющей стали 304 подходят для трехзажимного зажима 1,57. Сопло для окиси алюминия с линзой для газа TIG 53N59 Подходит для PTA DB SR WP 9 20 24 25 Горелка для сварки TIG 10 шт. TVS 2 Двунаправленный ограничитель переходных процессов серии SM6T SM6T15CAY 12,8 В, упаковка из 5 шт. SM6T15CAY DO-214AA 14.3 V Соответствует RoHS: Да, Stubai zk2005 Сменная губка для плоской тонкой губки 140 x 240 мм, белая. Цвет: теплый белый Nrthtri MR16 Светодиодный прожектор 4 Вт, 270 люмен, 35 Вт, равный Holegen 3000/4000/6000 K, 45 градусов, узкий поток, 12 В постоянного тока, основание GU5.3, 10 шт. Светодиодная винтовая лампа Эдисона. Защитная пленка для экрана Galaxy J4 Plus 2018, твердость 9H, пленка из закаленного стекла, HD-Clear, UNEXTATI 3D Touch, технология DoubleDefence, фоторезистор GL5528, светозависимый резистор, датчик яркости LDR для солнечного света и других электронных проектов .Позолоченные контакты между штекером Патч-корд Кабель Ethernet Cat5e 50 футов, розовый, 2 шт.