Энергосберегающее отопление нового поколения: Энергосберегающие системы отопления. Энергоэффективные технологии отопления нового отопления BLUEMAT

Энергосберегающие системы отопления. Энергоэффективные технологии отопления нового отопления BLUEMAT

Под эффективностью мы понимаем не минимизацию потребления энергии, а минимизацию эксплуатационных затрат.

Энергосберегающее отопление на основе капиллярных матов

В нашей окружающей среде имеются достаточно большие объемы энергии. Нужно лишь правильно подобрать энергосберегающие системы отопления и используемое оборудование, чтобы перевести эту энергию на уровень температуры помещения в 22–26 °C, или на уровень технологической температуры в 60 °C. Наши решения содержат все необходимое: низкотемпературные теплообменники BLUEMAT на основе матов из капиллярных трубок (капиллярные маты), коллектора, накопители и распределители тепла и холода.

Капиллярные маты — энергосберегающее отопление нового поколения

Почему капиллярные маты настолько эффективны? Прежде всего система BLUEMAT требует более низких температур в режиме обогрева, чем традиционные радиаторы или однотрубные напольные системы, и более высоких — в режиме охлаждения, чем традиционные кондиционеры. Что делает их более эффективными.

В любом случае мы используем BLUEMAT системы с наиболее экономичными естественными источниками тепла или холода, такими как природный водоём или водяная скважина, используемые в тепловом насосе, или солнечная установка для комбинированной выработки электроэнергии и тепла. Применение тепловых насосов позволяют достичь высоких значений КПД. Даже в сочетании с обычным нагревательным котлом или холодильным агрегатом, системы фирмы GeoClimaDesign открывают большие возможности для повышения энергоэффективности.

Как работает энергоэффективная система отопления

Обогрев конвектором выглядит так: прибор нагревается, теплый воздух поднимается, и в итоге в помещении становится тепло. Минус — приходится ждать по 10–20 минут. Немецкая система капиллярных матов BLUEMAT работает эффективнее: нагревает потолок, стену или пол изнутри, а тепло равномерно распространяется по комнате. По ощущениям это похоже на естественный природный процесс — как будто греешься на солнце, при этом воздух не становится сухим.

Такой эффект достигается, потому что площадь нагревательной поверхности очень большая. Это же — причина экономии. Чтобы обогревать помещение со скоростью конвекционного нагрева, не нужно сильно прогревать воду — достаточно 30 градусов. Экономия электроэнергии в долгосрочной перспективе — около 40%.

Другой плюс системы — она греет зимой, но охлаждает летом. Вместо горячей воды по трубам течет охлажденная, поэтому не приходится ставить кондиционер и дышать пропущенным через него воздухом. Маты не создают потоки воздуха, поэтому пыль не летает по комнате, и нет риска простудиться.

Маты не только энергосберегающие технологии отопления, но и незаметные. Их устанавливают в квартиры, офисы, под футбольные поля, в интерьере исторических зданий — везде, где нужно скрыть систему отопления.

Инженеры «ГеоКлимата» помогут сэкономить деньги и создать в доме тепло: +7 (499) 638 22 66.

Отопление будущего с помощью энергосберегающих систем

Энергетическая эффективность отопления частного дома – необходимость времени. В обозримом будущем энергоресурсы дешеветь не будут. Для обогрева жилищ нужны энергосберегающие системы.

Кварцевые монолитные ТЭНы

В конце 20 века в РФ запущены в производство МКТЭНы – монолитные кварцевые тепловые электрические нагреватели.

От традиционных ТЭНов эти преобразователи электроэнергии в тепло сильно отличаются. Позднее они вошли в энергосберегающие системы электрического отопления.

Устройство обычного нагревателя

В ТЭНах электронагревательный элемент в виде спирали из тонкой нихромовой проволоки установлен в металлической трубке: стальной нержавеющей, медной, латунной или алюминиевой. От металла спираль отделена засыпкой мелкораздробленного периклаза, не проводящего электрический ток.

Периклаз – это огнеупорный искусственный материал, получаемый электроплавкой или обжигом природного окисла магния – магнезита.

Конструкция монолитного электронагревателя

В МКТЭНах нагревательный элемент нового поколения размещен внутри бетонной пластины с габаритами 610 х 340 х 25 мм. От слабо проводящего электрический ток бетона его отделяет толстая прослойка из непроводящего кварцевого песка.

Кроме того, в этом устройстве используется свойство сухого кварцевого песка аккумулировать своей массой тепло, вырабатываемое тепловыделяющим проводником при пропускании через него электрического тока. Такая способность кварца позволяет добиться существенного энергосбережения при обогреве жилища.

Накапливается тепловая энергия толщей бетонной панели, после чего отдается в виде длинноволнового инфракрасного излучения. После выключения напряжения начинает работать энергосбережение – эффект «раскаленного кирпича», т.е. бетонная панель с кварцевым песком выделяет накопленное тепло.

Система отопления на кварцевых ТЭНах

Современные технологии начали использовать уже в новом веке. На основе этих нагревательных элементов-панелей создано энергосберегающее отопление – система локального автономного обогрева помещения.

Основные элементы

В состав системы входят:

  • электрические нагревательные элементы типа МКТЭН, температура которых достигает 85 – 95 °C;
  • датчики температуры воздуха снаружи здания и внутри каждого из отапливаемых помещений частного дома;
  • схемы управления нагревательными элементами.

Преимущества

Энергосбережение и высокая экономичность этого способа отопления основаны на том, что длительность работы системы за сутки меняется от 3 до 10 часов. Это время значительно уменьшается при правильном утеплении частного дома. Экономия – до половины расходов традиционной системы на электронагревателях.

Такого существенного энергосбережения удается достичь благодаря следующим достоинствам монолитных кварцевых ТЭНов:

  • низкая стоимость – нагревательная проволока не мотается в спираль, металлическая трубка не используется, не режется, не гнется и пр. ;
  • малый нагрев проволоки и полная изоляция от кислорода дает большой срок работы при отоплении частного дома;
  • не нужно обслуживание;
  • электро- и пожаробезопасные технологии обеспечивают нагрев поверхности ниже температуры воспламенения материалов в доме;
  • простой монтаж и др.

Использование инфракрасного обогрева

Когда вы зимой греетесь у костра в лесу, вам тепло, хотя вокруг морозный воздух. Вы пользуетесь потоком инфракрасного излучения.

Инфракрасные отопительные панели дают невидимое тепловое излучение. Эффект по этой технологии достигается, когда нагревающий элемент не раскаляется до температуры свечения, а дает тепло при нагреве до десятков или нескольких сотен градусов.

Эти устройства используются как энергосберегающее отопление, когда нужно обогреть небольшое помещение. Нагревать большие площади с высокими потолками дорого, т. к. теплый воздух поднимется вверх, а его место займет холодный.

Такое излучение проходит сквозь воздух, не нагревая его. Попав на поверхность пола, оборудования, инфракрасное излучение поглощается материалом, который нагревается и отдает конвекцией тепло в окружающий воздух. Возле инфракрасной панели человеку комфортно, как у горящего костра. Ученые провели эксперимент по технологии экономии тепла:

  • нагрели воздух в помещении до + 45 – 50 °C, но при этом заморозили стены – люди ощущали холод;
  • нагрели стены и охладили воздух до + 10° C – работникам было комфортно.

Инфракрасные отопительные панели, имеют и другие названия: керамические, тепловые или лучевые панели и т. д.

Лучевое отопление – это не только энергосбережение, но и комфорт в помещении:

  • расход энергии на 50 – 65% меньше, чем при конвективном отоплении;
  • нагревается сам человек и окружающие его предметы;
  • температура воздуха в помещении на 3 – 5 °C меньше, чем при конвективном отоплении;
  • эффект от инфракрасного излучения появляется сразу, без нагрева воздуха в помещении, его стен и потолка;
  • перепад температур возле пола и потолка будет в десяток раз меньше, чем при традиционном отоплении.

Как экономить в традиционных системах?

С середины ХХ века для отопления частного дома и многоэтажных зданий использовали технологии водяного отопления. Правильно спроектированная система позволяла вручную регулировать теплоотдачу каждой батареи и так обеспечивать энергосбережение. Но с дешевым топливом при перегреве открывали форточку, а не закручивали вентиль на батарее.

Энергетический кризис привел к многократному росту цен на топливо. Вместо ручного вентиля стали использовать технологии термостатических клапанов. Они сами поддерживают нужную температуру радиатора. При перегреве помещения клапан уменьшит подачу воды в батарею, а ее избыток пойдет через байпас – обходную трубу. Такой способ увеличит энергосбережение и снизит расходы на отопление на 1/5, а то и 1/4.

Еще больший эффект получают, связав все термостатические клапаны при автоматизации управления системой отопления.

Энергосберегающее отопление частного дома: технология

Вслед за неуклонным удорожанием углеводородного топлива и электроэнергии владельцев загородных домов и дач стали всерьез заботить вопросы экономии энергоносителей. В то же время продавцы различной отопительной техники стали делать упор на этот фактор, представляя любое оборудование как высокотехнологичное и экономичное. В данной статье вы сможете почерпнуть ряд полезных советов, позволяющих организовать у себя дома энергосберегающие системы отопления.

Экономичная генерация тепла

Процесс расхода любых энергоносителей начинается именно отсюда – из котельной. Здесь стоит ваше теплосиловое оборудование и от того, насколько эффективно оно функционирует и чем питается, во многом зависит величина суммы к оплате в ежемесячных счетах.

Итак, в котельных частных домов чаще всего встречаются:

  • котлы газовые;
  • твердотопливные теплогенераторы;
  • электрокотлы.

Общеизвестно, что технологии не стоят на месте и отопительная техника обновляется чуть ли не каждый год. Тем не менее газовый энергосберегающий котел появился отнюдь не сегодня. Ведь чем определяется экономичность теплового агрегата? Эффективностью. И если ранее КПД газовых теплогенераторов едва переваливало за 90%, то сегодня это уже 97%. Котлы, где по максимуму внедрены энергосберегающие технологии для отопления, называются конденсационными.

При обычном сжигании газа происходит химическая реакция с выделением воды, что тут же переходит в пар, отбирая некоторую долю теплоты сгорания топлива. После чего водяной пар успешно покидал котел через дымоход, унося эту частичку тепла с собой в трубу. Конденсационный теплогенератор заставляет пар сконденсироваться обратно и вернуть отобранную энергию, за счет чего имеет столь высокий КПД.

Горение органического топлива, то бишь, древесины, — процесс более сложный. К сожалению, так успешно отобрать у нее энергию, как у природного газа, не получится. Твердотопливный агрегат с его КПД в 75% никак не назовешь энергосберегающим. Но и тут есть 1 момент, связанный с его эксплуатацией. Дровяной котел сработает на 75% только при максимальном режиме, а не длительном тлении, как это любят делать пользователи. Отсюда вывод: обеспечить экономичность оборудования может тепловой аккумулятор, загружаемый работающим с максимальной эффективностью теплогенератором.

Если у вас в топочной присутствует электрокотел, то будьте спокойны – более энергосберегающей установки вам не сыскать. Агрегат отличается наивысшим КПД – 98—99% и добиться от него большего просто нереально. А вот на отдельно стоящий циркуляционный насос обратить внимание стоит. Неверно подобранный насос может перечеркнуть любое энергосберегающее отопление частного дома. Так бывает, когда он взят с двукратным запасом по давлению. Работающий круглосуточно в течение полугода мощный агрегат израсходует массу электроэнергии.

Совет.

Практика показывает, что для дома площадью до 200 м2 вполне достаточно насоса 25/40 с давлением 4 м водного столба. Если вы хотите перестраховаться, возьмите агрегат 25/60 (6 м. вод. ст.), получите приличный запас.

Оптимизация отопительных систем

Еще с советских времен мы привыкли открывать форточки в тех случаях, когда горячие батареи перегревали воздух в помещениях. Понятно, что сейчас такой подход неприемлем, правильное решение – это регулирование нагрева комнат, в идеале оно должно производиться в автоматическом режиме. Тогда дом будет потреблять столько тепловой энергии, сколько требуется, чтобы поддерживать определенную температуру.

Современное энергосберегающее отопление нового поколения невозможно без радиаторных термостатических вентилей. Эти простые устройства устанавливаются на входе теплоносителя в отопительные приборы и управляют его расходом. Термический элемент, настроенный на необходимую температуру, станет уменьшать проток теплоносителя в том случае, когда воздух в помещении достигнет этой температуры. В определенных условиях вентиль может и вовсе перекрыть проход, если в доме станет жарко.

Совет. Если в помещении имеется несколько отопительных приборов, то термостатические клапаны вовсе не нужно ставить на каждую батарею, это слишком затратное мероприятие. Для нормального регулирования достаточно установить устройство на один радиатор, чья тепловая мощность составляет 50% и более от потребной для всего помещения.

Другой способ энергосбережения – это автоматическое управление работой котельной установки с помощью выносных терморегуляторов. Устройство с термочувствительным элементом устанавливается в проходном помещении (например, в коридоре) и управляет нагревом теплоносителя во всей системе, напрямую взаимодействуя с теплогенератором. Простейший из таких приборов снабжен рукояткой, задающей требуемую температуру, при ее достижении он передает сигнал на котел и тот прекращает нагрев. Также подобные энергосберегающие технологии для частного дома позволяют задать необходимую температуру в доме на неделю вперед.

Еще более прогрессивное решение – погодное регулирование нагрева теплоносителя. Датчик, находящийся снаружи, передает сигналы на контроллер, управляющий работой котла. Таким образом, во время похолодания генерация тепла автоматически увеличивается еще до того, как дом начнет остывать и наоборот. Вдобавок домовладелец может контролировать систему дистанционно, через интернет или GSM-связь.

Стоит обратить внимание и на новые энергосберегающие радиаторы, такие производятся под немецким брендом KERMI. Фокус в том, что батарея сама управляет расходом теплоносителя в зависимости от температуры в комнате. Если воздух достаточно нагрет, то функционировать будет только часть радиатора, а другая останется холодной. При падении температуры в работу включится и вторая часть, наращивая теплоотдачу прибора почти вдвое.

Немного об электроотоплении

Всякий электрический нагреватель весьма эффективен, он преобразует электроэнергию в тепло с КПД 98—99%. Поэтому энергосберегающие системы электрического отопления – это не более, чем миф, придуманный производителями и продавцами соответствующей отопительной техники. Другое дело, что электроприборами можно пользоваться с умом, чтобы снизить потребление энергии. Здесь далеко не последнюю роль играет степень утепления здания, впрочем, как и для обычных водяных систем.

Для справки. Все бытовые электрические нагреватели с завода комплектуются термостатами и прочей необходимой автоматикой.

Оптимальное решение по экономии электричества – устройство кабельных теплых полов или установка в удачных местах инфракрасных обогревателей. Тогда за счет меньшего количества потребляемой энергии можно успешно отапливать жилище. Тем не менее мощность нагревателей должна соответствовать тепловым потерям дома, иначе вместе с энергосбережением вы рискуете замерзнуть, поскольку чудес не бывает и законы физики никто не отменял.

Заключение

Следует отметить, что технологии энергосбережения развиваются с каждым годом, отчего на рынке появляются новые высокотехнологичные продукты. Но надо понимать, что подобное оборудование стоит недешево. Например, сходу купить конденсационный котел сможет не каждый. Но можно начать с малого – постепенно оборудовать батареи термостатами. Но главное – это все же тепловая изоляция здания, без нее сбережение энергоносителей невозможно.

Отопление квартиры - Энергосберегающие технологии

Электрическое отопление ПЛЭН устанавливается с дополнительной тепло-изоляцией на потолок, занимая при этом около 80% площади поверхности. Закрывается любым декоративным материалом кроме зеркала и металлических листов. Регулирование температуры осуществляется при помощи комнатного терморегулятора: с помощью встроенного датчика он измеряет окружающую температуру и управляет блоком нагрева согласно различию между заданной и фактической температурой.

Класс защиты IP67 — этим может похвастаться только ПЛЭН!

Доказанная безопасность:

  • ПЛЭН получил все требуемые патенты и сертификаты, которые доказывают эффективность использования прибора и его абсолютную безопасность.

 

Оказалось, что дешевое и безопасное тепло не там, где к нагревательному элементу «не притронуться». Инфракрасное излучение с температурой нагревательного элемента от 40 до 45 градусов является оптимальным и по экономическому аспекту, и по сроку службы. Кроме того, при инфракрасном излучении в помещении не образуется конвекционных потоков (где «голова в тепле, а ноги в холоде»), уносящих тепло со сквозняком. Размещенные под потолком нагревательные элементы прогревают стены, пол и находящиеся в комнате предметы, которые сами становятся носителями тепла. Соответственно, энергия не тратится впустую. Расход электричества для поддержания заданной температуры в зданиях, соответствующих по теплоизоляции СНиПу 1998 года, составляет около 5-8 Ватт в час на квадратный метр. В постройках, соответствующих новому СНиПу 2003 г., этот показатель может опускаться до 4-5 Ватт. Система работает на восполнении тепло потерь помещения (включенное состояние системы составляет около 10 минут в течении часа).

Для поддержания работоспособности, система отопления ПЛЭН не требует дополнительного обслуживания и проста в эксплуатации.

Система отопления ПЛЭН является пожаробезопасной, что подтверждено соответствующими документами.

Диапазон инфракрасных лучей системы отопления ПЛЭН являются полезными для жизнедеятельности растений, животных и человека.

Герметичность системы отопления ПЛЭН полностью исключает короткие замыкания в электрической цепи.

Стоимость системы отопления: 1200 р./м2 без установки, от 1600 р./м2 с установкой.

 

Срок службы системы отопления ПЛЭН более 50 лет.

ООО «Энергосберегающие технологии» предоставляет гарантию на ПЛЭН


сроком 25 лет.
 
Добавить отзыв

Экономичные электрообогреватели нового поколения: секреты выбора

Не всегда есть возможность провести централизованное отопление. Для небольших загородных построек решением проблемы могут стать экономичные электрообогреватели нового поколения. При необходимости энергосберегающие обогреватели конвекторного типа могут помочь с отоплением даже дома с большой площадью. Подобные конструкции, конечно, уступают газовому отоплению по эксплуатационным характеристикам, но выгодны по стоимости монтажных работ и потребляемой электроэнергии. Энергосберегающие обогреватели имеют множество преимуществ. Например, устойчивость к перепадам напряжения при минимальном энергопотреблении.

Именно от этого бытового прибора зависит комфорт и уют в любом доме

Содержание статьи

Экономичные электрообогреватели нового поколения: преимущества современных моделей

Прежде чем купить энергосберегающие обогреватели для дачи, нужно разобраться во всем многообразии современных моделей. Для организации качественного отопления подойдут конвекторы, масляные устройства, инфракрасные модели, а также тепловые пушки.

Выбирая экономичную модель, можете опираться на следующие критерии:

  • оптимальное соотношение используемой энергии к обогреваемой поверхности;
  • простота монтажа, так как подобные конструкции устанавливаются без привлечения специалистов;
  • повышенный уровень безопасности при использовании в домашних условиях.
Некоторые модели имеют компактные размеры, благодаря чему становятся практически незаметными

Модели экономичных электрообогревателей нового поколения эффективны при создании благоприятного микроклимата в помещении. Подобные конструкции пользуются спросом, благодаря следующим преимуществам:

  • простота в управлении и эксплуатации;
  • возможность выбирать режимы работы и регулировать температуру;
  • многообразие моделей позволяет выбрать самый подходящий вариант;
  • устройство не производит шума и не выделяет запахов;
  • установка оборудования не требует специального разрешения;
  • при высоком КПД помещение прогревается за считанные минуты;
  • можно подобрать модель в любых ценовых категориях.
Энергосберегающие конструкции свободно размещаются под окнами. При необходимости их можно переместить

Совет! Устройство стоит недорого, но некоторые модели потребляют значительное количество электроэнергии. Поэтому на данный параметр стоит обращать внимание.

Статья по теме:

Какой лучше обогреватель для дачи: отзывы. В статье мы рассмотрим виды устройств, достоинства и недостатки, обзор актуальных предложений, секреты правильного выбора и эксплуатации. После прочтения этой статьи Вы легко сможете решить задачу поддержания комфортной температуры в доме.

Разновидности обогревателей

По типу работы экономичные электрообогреватели нового поколения бывают таких разновидностей:

Многие устройства имеют простой механизм управления

Характеристики кварцевых обогревателей для дома: энергосберегающие настенные модели

Кварцевые обогреватели выглядят как сплошная пластина. При этом внутри корпуса находится смесь из песка и кварца, а также располагаются ТЭНы. Рабочий элемент прибора изготавливается из соединения никеля и хрома. Работает оборудование от электрической сети. Специальная теплоизоляция защищает механизм от контактирования с внешней средой.

Кварцевые модели можно установитьдаже в ванной

Преимуществом кварцевого электрического обогревателя на стену является то, что его можно оставить без присмотра. Механизм управления позволяет настроить его на сохранение определенного уровня температуры. Такое устройство не может замкнуть, и оно не загорится, поэтому является полностью безопасным. Но стоит помнить, что прибору требуется 20 минут для разогрева. Для прогрева помещения большой площади потребуется несколько кварцевых устройств.

К сведению! Кварцевые обогреватели имеют большой вес, поэтому для их надежной установки требуются крепкие кронштейны.

Итак, у кварцевых устройств стоит отметить следующие преимущества:

  • небольшое расходование электричества;
  • используются для прогрева помещений любого типа;
  • быстрое нагревание и длительное сохранение тепла;
  • рабочая поверхность имеет невысокую температуру;
  • прочность нагревательного элемента.
Подобные устройства могут иметь интересный дизайн

Какой энергосберегающий керамический обогреватель для дома выбрать

Керамические обогреватели могут работать несколькими способами. Прежде всего, это конвекционный процесс, когда воздушные массы проходят через элемент нагрева, а затем отапливают помещение. Также используется инфракрасное излучение. При этом нагреваются предметы.

Керамические модели занимают мало места

В продаже есть настольные, настенные и напольные энергосберегающие обогреватели для дома. Во многих изделиях присутствуют терморегуляторы с таймером, ионизатором и электронным управлением.

Настенные модели имеют вид тонкой пластины, поэтому их можно устанавливать даже в малогабаритных помещениях. Для напольных конструкций предусмотрена опция защиты от переворачивания.

Керамический прибор панельного типа состоит из корпуса, в котором есть детали для прогрева из керамики и специальный экран с функцией теплоотражения. Подобное устройство имеет такие преимущества:

  • безопасное использование, когда в конструкции предусмотрена защита от перегрева;
  • высокий уровень КПД позволяет устройству выделять тепло даже когда нагреватель выключен;
  • компактность оборудования и простота его монтажа;
  • прибор работает в бесшумном режиме;
  • система управления позволяет настроить работу в нескольких режимах;
  • длительный срок службы.
Конструкция состоит из нескольких слоев

Подобные обогревающие приборы потребляют на 30% меньше электричества, чем аналогичное оборудование.

К сведению! Керамические изделия можно применять для прогрева квартир и частных домов. При этом не нужно специальное обслуживание.

Чем хорош энергосберегающий масляный обогреватель для дома?

К традиционным решениям относятся варианты электрических масляных обогревателей. Они известны великолепными техническими характеристиками. Такие приборы не поглощают кислород, не выделяют плохих запахов, а также подходят для длительной эксплуатации. Можно приобрести как стационарные, так и мобильные модели. Эти конструкции оборудуют ступенчатыми регуляторами мощности.

Масляные конструкции могут иметь разную форму и различное количество секций

Масляные конструкции также называют энергосберегающими, потому что тепло выделяется даже после их выключения. Приборы известны следующими преимуществами:

  • небольшая стоимость;
  • прочность устройства;
  • бесшумная работа;
  • простота в эксплуатации;
  • способность хранить тепло длительное время;
  • мобильность;
  • наличие специального механизма отключения.
Мобильные изделия могут иметь стальные ножки или даже колесики

Масляное оборудование во включенном состоянии должно находиться только в вертикальном положении. Если оно хранилось в лежачем положении, то перед работой нужно, чтобы оно постояло минут 20.

При покупке масляного обогревателя важно учитывать его мощность, наличие регулятора термостата, а также на количество секций и их толщину.

К сведению! Подобные устройства нельзя использовать в помещениях с повышенным уровнем влажности. К поверхности приборов нельзя прикасаться, когда она нагрета.

Особенности инфракрасных обогревателей

При выборе инфракрасных настенных энергосберегающих обогревателей для дома значение имеет цена и технические параметры. Приборы практичны и экономичны. Они набирают необходимую температуру в минимальные сроки, а также не сжигают воздух. Кроме того, подобные приборы бесшумны и неприхотливы к месту расположения.

Инфракрасные конструкции безопасны, поэтому их можно использовать в домах, сделанных из древесины. Они работают за счет инфракрасных волн, которые нагревают окружающие предметы.

Стоит учитывать, что при выключении оборудования тепло не будет сохраняться, а температура сразу же понизится. Прежде чем приобрести прибор, нужно правильно рассчитать безопасную мощность устройства.

Важный элемент инфракрасной конструкции

Вместе с установкой подобного оборудования, стоит использовать и увлажнитель воздуха, так как инфракрасный прибор сильно сушит воздух. Но недостатки блекнут на фоне преимуществ:

  • в устройстве нет вентилятора, что обеспечивает бесшумную работу;
  • прогрев поверхности в кратчайшие сроки;
  • воздух прогревается снизу;
  • простота подключения и установки;
  • положительное влияние на организм человека;
  • повышенный уровень КПД.
Подобные конструкции можно расположить на потолке

К сведению! Если прибор направлен на определенную область в помещении, то он прогреет ближайшие предметы, а в остальной части температура не поменяется.

Статья по теме:

Инфракрасные обогреватели с терморегулятором для дачи создадут благоустроенную обстановку в любое время года. Чтобы понять, как работает обогреватель, в рамках обзора мы разберем все особенности прибора, технические параметры, варианты установки.

Как правильно рассчитать экономичность модели

У каждого прибора есть как свои плюсы, так и определенные недостатки. Инфракрасные изделия обладают такой же мощностью, что и водяная система отопления, но расходы будут в два раза меньше. Конвектор не относится к экономичному оборудованию, но в сочетании с термостатами можно снизить расход на отопление в полтора раза.

Выбор подходящего оборудования зависит от определенных технических характеристик

Чтобы сократить потребление электроэнергии, воспользуйтесь простыми советами:

  • обложите здание еще слоем кирпича с теплоизоляцией;
  • двери должны быть с утеплением, а окна тройными;
  • утепление чердачного помещения позволит уменьшить теплопотери;
  • установка термостатов.

Подобное уменьшение теплопотерь позволит сделать отопление обогревателями более выгодным в экономическом плане.

Какой вариант выбрать

Чтобы выбрать качественный и экономичный обогреватель, нужно сравнить продукцию от разных производителей. Характеристики и цена некоторых моделей приведены в таблице.

Изучив информацию в нашем обзоре, вы сможете выбрать лучшую модель по таким показателям, как долговечность, экономичность и эффективность.

Предыдущая

Бытовая техникаКакой фирмы стиральная машина лучше и надежнее в быту: характеристики и рейтинг востребованных моделей

Следующая

Бытовая техникаГриль электрический для дома: рейтинг популярных моделей и секреты выбора

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Экономичные электрообогреватели нового поколения | Nobo

Экономичные электрообогреватели нового поколения Nobo

Основные преимущества электрообогревателей нового поколения:

  • Система двойной изоляции
  • Экономия электроэнергии
  • Элегантный и эргономичный дизайн
  • Современный нагревательный элемент в 2 раза эффективнее аналогов
  • Бесшумность за счет естественной конвекции
  • Защита от ожогов - лицевая поверхность без нагрева
  • Без запаха, не сжигает кислород
  • Точнейший электронный термостат
  • Самая современная защита от перегрева, скачков напряжения
  • Ресурс непрерывной работы 30 лет

С каждым годом потребители все больше задумываются об экономичности использования электрических приборов. В большой мере это касается различного рода обогревателей. Еще недавно достаточно было купить любой обогреватель, подключить его, и он работал на максимальной мощности, не имея даже регулятора для выставления температуры воздуха в помещении. Несколько позже начали появляться обогреватели со ступенчатым изменением мощности нагрева, а потом и с датчиками температуры, которые замеряли температуру воздуха в помещении и, в зависимости от температурных изменений, включался ТЭН для нагрева или выключался.

Многие обогреватели и на сегодняшний день выпускаются в таком исполнении, и производитель не заботится o таких показателях работы как: материал нити накаливания, спираль накаливания - открытая или закрытая, какая температура ТЭНа, с какой погрешностью обогреватель поддерживает температуру воздуха в помещении, насколько он эффективен. Единственное, на чем в последнее время начали акцентировать внимание - это такие характеристики как «сжигание кислорода» и «осушение воздуха».

Последняя тенденция в области использования обогревателей - это выпуск экономичных электрообогревателей нового поколения. И здесь уже единичные производители начали затрагивать и решать этот вопрос. Компания Nobo почти 100 лет занимается выпуском конвекторов. Первоначально это были обычные конвекторы с открытыми ТЭНами без регулировки температуры, которые совершенствовались каждый год. Уже с 2008 года начали производиться современные конвекторы с закрытыми ТЭНами, с очень низкими температурами самого корпуса конвектора (не более 90С), с автоматическим поддержанием температуры воздуха в пределах ±1С. Именно эти характеристики вывели бренд Nobo на самые высокие позиции рынка конвекторов.

В 2011 появляется первая проводная система удаленного управления обогревателями Nobo - Orion 512, а уже в 2012 - беспроводная система с возможностью управления через смс-команды – Orion 700. Появились новые приемники, через которые стало возможным управлять не только конвекторами Nobo, но и любыми электрическими приборами.

Вопрос эффективности также решался поэтапно, и точность поддержания температуры воздуха повысилась до ±0,4С. В новой серии конвекторов, специально разработанной для детских комнат, температура корпуса конвектора была снижена до 60С. Это полностью исключило вероятность ожогов.

На фото: Конвектор Nobo в детской комнате

В конце 2014 появляется новейшая современная версия удаленного управления конвекторами Nobo - Energy Control и конвекторы нового поколения серии ecoDesign с новейшими термостатами управления. Такой эффективности работы конвекторов нового поколения никто другой пока не может обеспечить - ±0,1С погрешность в поддержании температуры воздуха в помещении и не более 0,5 Ватт потребления мощности в ждущем режиме.

Система управления осуществляется со смартфона/планшета в пределах помещения или из любого места планеты через интернет. Сегодня смело можно сказать, что Nobo - это не только высокотехнологичные и высококачественные конвекторы нового поколения, но полноценная система «умный дом» с гарантией 10 лет на конвекторы и ресурсом работы в 30 лет.

На фото: Система управления Nobo Energy Control

Экономные обогреватели серии NFC и NTE, которые появляются на рынке в 2015 году, выполнены с учетом новейших разработок и соответствуют экологическим стандартам EcoDesign. Современные электрические электрообогреватели NOBO оснащены новейшими термостатами, для разных моделей обогревателей можно подобрать свой термостат, есть даже модель для детских комнат и мест установки, где не требуется механическая ручная регулировка температурного режима, – в таких моделях нет бегунка. Также это может быть актуально для домов, для дачных домов и больших квартир, где установлено много конвекторов и управлять ими удобнее дистанционно. Установка температуры происходит удаленно, через специально разработанное приложение, которое можно скачать в Appstore или GooglePlay. Все модели могут использоваться в качестве настенных или напольных. Напольные энергоэкономичные конвекторы крепятся к стене при помощи настенных кронштейнов, напольные устанавливаются на колесики и их легко можно перемещать в любую комнату дома.

Новое решение для российского рынка энергосберегающего отопления – это серия конвекторов нового поколения Nordic NFK, вышедших на российский рынок в 2019 году. Благодаря усовершенствованному ТЭНу они способны значительно сократить потребление электроэнергии. Серия конвекторов Nordic NFK представлена в обновленном дизайне – новая конструкция выхода воздуха обеспечивает оптимальный обогрев помещения, также снизился нагрев фронтальной поверхности на 10С. Все модели поставляются с термостатом NCU, который при желании можно заменить на подходящую радиоуправляемую модель, позволяющую осуществлять удаленное управление отопительными приборами посредством систем NOBO Energy Control и Orion 700. Фронтальная поверхность электрообогревателей стала более плоской, благодаря чему внешний вид стал более лаконичным и стильным.

На фото: Конвекторы Nobo серии NFK

Бытовые обогреватели нового поколения Oslo NTL – кардинально новое решение в дизайне. Плоская передняя панель, отсутствие жалюзи спереди и верхний выход воздуха позволяют фронтальной поверхности снизить уровень нагрева, что сводит вероятность получения ожога к нулю. Это было неоднократно протестировано на фабрике-изготовителе и официально заявлено производителем.

Современные электрические экономичные обогреватели можно размещать в любых помещениях – квартирах, офисах, дачах, загородных домах. Для дачи и для дома очень актуальной будет возможность подключения конвекторов к системе «умный дом» и удаленное управление посредством системы NOBO Energy Control.

Энергосберегающее отопление – одна из важных задач, которую пытаются решить все производители отопительных приборов. Современные электрообогреватели NOBO справились с этой задачей. Экономными эти электрические конвекторы можно назвать еще и потому что они способны быстро достигать заданной температуры, то есть прогревать помещение, и поддерживать температуру с точностью до 0,1С. Сегодня это лучший показатель на рынке тепловых электроприборов. Отопительные экономичные приборы с малым потреблением электроэнергии позволят значительно сократить расходы на нее – не только в процессе работы, но и в «спящем режиме», когда устройство потребляет не более 0,5 Вт.

Энергоэкономичные бытовые конвекторы NOBO отличаются от прочих не только техническими характеристиками, но и стильными дизайнерскими решениями. Для обогревателей нового поколения Oslo производитель предлагает 3 стеклянные панели разных цветов, их можно легко менять под интерьер или под настроение. Панели легко крепятся и их можно быстро поменять на другую модель подходящего цвета. Такой обогреватель не только обогреет помещение, но и станет уникальным дизайнерским акцентом в интерьере. Для ванных комнат также подойдут экономные электрообогреватели с малым потреблением электроэнергии – все модели NOBO соответствуют классу защиты IP 24, это означает, что их можно использовать во влажных помещениях, при условии исключения попадания прямых струй воды.


Энергосберегающий котёл - дешевле газа! Алтернативное отопление электричеством

ВСЕМ! ВСЕМ! ВСЕМ! ЭКОНОМНОЕ ОТОПЛЕНИЕ

Энергосберегающий компактный электрокотёл

Предприятие «ЦПМК» предлагает населению Вашего района отопительное оборудование нового поколения - энергосберегающий компактный электрокотёл-миниавтомат. Он предназначен для отопления любых помещений, подходит к любым системам водяного отопления и может устанавливаться как отдельно, так и параллельно к уже существующим угольным котлам и печам. Отопление помещений электрокотлом обходится дешевле, чем газом, углём, дровами и другим топливом, так как на отопление 1 м: затрачивается 5 кВт/ч электроэнергии в месяц.

Для тех, кто понимает-

Уникальный электрокотёл-миниавтомат

ДЕШЕВЛЕ ГАЗА!

Предлагаемый модуль отопления - новая разработка на основе современных энергосберегающих технологий. Предназначен для нагрева теплоносителя (воды, тосола) в системах водяного отопления домов, коттеджей, дач, гаражей, теплиц, автомастерских, торговых павильонов и складских помещений. Это экологически чистое, автономное, суперкомпактное и надежное оборудование подходит для любых систем водяного отопления и может устанавливаться параллельно уже существующим. Работает от 220/380В. Мощность регулируется автоматическим терморегулятором.

Принимаются индивидуальные и коллективные заявки на приобретение энергосберегающих электрокотлов от населения и предприятий.

Заявку можно передать с указанием адреса, моделей электрокотлов и их количества по тел. 8(960)107-19-86, 8(960)126-79-19, при плохой или недоступной связи - используйте альтернативный номер телефона: +372-579-700-48.

Преимущества энергосберегающих электрокотлов:

  • • Мощность 3-12 кВт
  • • Высокий термический КПД - 98 %
  • • Безопасность для окружающей среды
  • • Долговечность - до 30 лет
  • • Автоматический режим работы
  • • Низкий уровень шума
  • • Супер компактные габаритные размеры
  • • Работа в любых системах водяного отопления
  • • Возможность создания мини-котельных с использованием нескольких модулей параллельно
  • • Дешевле газа, жидкого и твердого топлива
  • • Гарантия - 10 лет (з/ч - бесплатно)

Для писем: 394035, г. Воронеж, ул. С. Перовской. 108, «ЦПМК». Тел./факс (473)277-10-35, 8(960)126-7919. E-mail: [email protected] Заявки на приобретение принимаются по телефону с 8.00 до 17.00.

Забудьте о газе, угле, дровах и неэкономичных электрокотлах!

Future Home Tech: 8 энергосберегающих решений на горизонте

От отопления и охлаждения до электроники и бытовой техники - для обеспечения нашей повседневной жизни требуется много энергии. Сегодня наши дома потребляют на 37 процентов больше энергии, чем в 1980 году. Но без энергоэффективности - за счет технологических инноваций и федеральных стандартов энергосбережения - это число было бы намного выше. Фактически, даже несмотря на то, что наше общее потребление энергии выросло, потребление энергии на одно домашнее хозяйство снизилось примерно на 10 процентов, несмотря на то, что наши дома больше и содержат больше устройств.

Благодаря достижениям наших национальных лабораторий, промышленности и научных кругов, оборудование, которое мы используем в наших домах, стало более энергоэффективным, чем когда-либо прежде, что экономит деньги потребителей и снижает выбросы углерода. Давайте взглянем на несколько технологий, которые мы можем ожидать увидеть на рынке в ближайшие несколько лет, которые сделают наши дома еще более экологичными.

1. Более умные, более взаимосвязанные дома

Мы живем во все более взаимосвязанном мире - то же самое верно и для наших домов. Новые электронные устройства и устройства теперь могут быть подключены к Интернету для предоставления данных в реальном времени, что упрощает понимание и снижает потребление энергии.

Вскоре эти технологии станут более рентабельными и интеллектуальными в результате проекта, поддерживаемого Управлением строительных технологий Министерства энергетики США. Новые беспроводные датчики, разработанные в Национальной лаборатории Ок-Ридж, повысят энергоэффективность дома за счет автоматизированных систем управления для нагревательных и охлаждающих устройств, освещения и других систем, которые получают доступ к таким данным, как температура наружного воздуха и помещения, влажность, уровень освещенности и заполняемость - все на долю от стоимость типичных беспроводных датчиков, которые вы видите сегодня на рынке.Тихоокеанская северо-западная национальная лаборатория, Национальная лаборатория возобновляемых источников энергии и Национальная лаборатория Лоуренса Беркли также разрабатывают новые протоколы и стандарты, которые улучшат взаимодействие интеллектуальных устройств друг с другом и с электросетью.

2. Сверхэффективные тепловые насосы

Управление строительных технологий представляет новое поколение систем тепловых насосов, которые согревают и охлаждают ваш дом, перемещая тепло из одного помещения в другое. К ним относятся:

3.Сушилки для одежды с защитой от углерода

Та же концепция, что и технологии тепловых насосов, которые обеспечивают комфорт в вашем доме, также может быть использована для другого важного применения: сушки одежды. Национальная лаборатория Ок-Ридж и General Electric разрабатывают сушилку нового типа, в которой используется цикл теплового насоса для выработки горячего воздуха, необходимого для сушки. Результат: более эффективная сушилка, которая может снизить потребление энергии на 60 процентов по сравнению с обычными сушилками, представленными сегодня на рынке.

4. Магнитные холодильники (правильно, магниты)

Национальная лаборатория Ок-Ридж и General Electric объединились, чтобы создать революционный новый тип холодильника, который использует магниты для создания холода, также известного как магнитокалорический эффект (понижение или повышение температуры). температура материала путем изменения магнитного поля). В течение последних 100 лет в холодильниках использовался процесс, называемый компрессией пара, при котором используются хладагенты, которые могут быть вредными для окружающей среды. Новый холодильник представляет собой революционную технологию, в которой используется охлаждающая жидкость на водной основе, что делает его более экологически чистым и более эффективным, что означает более низкие счета за электроэнергию и меньшее загрязнение углерода.

5. Расширенное управление окнами

Национальная лаборатория Лоуренса Беркли и компания Pella Windows работают над новыми окнами с высокой изоляцией, в которых используются датчики и микропроцессоры для автоматической регулировки затенения в зависимости от количества доступного солнечного света и времени суток, чтобы обеспечить надлежащее освещение и комфорт , экономия энергии и денег потребителей.

6. Изоляция Next-Gen

Изоляция - один из наиболее важных способов снижения затрат на отопление и охлаждение вашего дома. Industrial Science & Technology Network разрабатывает новую пенопластовую изоляцию, изготовленную из экологически чистых и современных композитных материалов, которые гарантируют, что тепло не уходит с чердака, стен и других частей дома в холодные зимние месяцы.

7. Светоотражающие кровельные материалы

Холодные крыши, покрытые материалами, содержащими специальные пигменты, отражают солнечный свет и поглощают меньше тепла, чем стандартные крыши. Ожидайте, что эти типы кровельных систем станут еще «прохладнее» благодаря новым флуоресцентным пигментам, разработанным Национальной лабораторией Лоуренса Беркли и PPG Industries, которые могут отражать почти в четыре раза больше солнечного света, чем стандартные пигменты.

8. Более яркое, лучшее освещение

Светодиоды (светоизлучающие диоды) прошли долгий путь: самые эффективные на сегодняшний день светильники потребляют на 85 процентов меньше энергии, чем лампы накаливания.Программа твердотельного освещения Управления строительных технологий поддерживает исследования и разработки, направленные на снижение стоимости светодиодов, делая их еще более эффективными и долговечными. Фактически, ожидается, что эффективность светодиодов удвоится с нынешних 125–135 люмен на ватт до 230 люмен на ватт в следующие несколько лет в результате продолжающихся исследований и разработок.

Зайдите на building.energy.gov, чтобы узнать, как Министерство энергетики продвигает строительные технологии, повышающие энергоэффективность и комфорт американских домов и предприятий.Кроме того, ознакомьтесь с Energy Saver, чтобы узнать о других способах экономии энергии и денег дома.

Новое поколение системы централизованного теплоснабжения с тепловыми насосами местного значения и усовершенствованными трубами, решение для будущих систем на основе возобновляемых источников энергии

Основные характеристики

Трехтрубные и децентрализованные тепловые насосы анализируются в сфере централизованного теплоснабжения системы.

Производительность этой системы сопоставима с низкотемпературной системой централизованного теплоснабжения.

Предлагаемое решение обеспечивает более низкие потери тепла и лучшую энергоэффективность.

Эффективность тем выше, чем выше рабочая нагрузка, например зимний день.

Реферат

Системы централизованного теплоснабжения (ЦТ) являются одним из основных компонентов будущих энергетических систем, поскольку они могут внести значительный вклад в переход к 100% возобновляемым источникам энергии. Использование тепловых насосов на подстанциях конечных потребителей ЦО уже было исследовано, и периодическое использование тепловых насосов оказалось экономической проблемой.В этой работе предлагаются районные тепловые насосы в системе ЦТ со сверхнизкими температурами, чтобы увеличить их коэффициент использования и, таким образом, повысить рентабельность. Таким образом, тройные трубы (TP) используются вместо обычных двухтрубных (TwP) для отделения линии горячей воды (HW) от линии отопления (SH), уменьшая размер тепловых насосов и скорость потерь. Тепловые насосы только повышают температуру в линии подачи горячей воды. Предлагаемая система ЦТ спроектирована и проанализирована термодинамически для выборочной сети, и результаты сравниваются с низкотемпературной системой ЦТ, как наиболее важным конкурентом предлагаемого решения.Результаты показывают, что предлагаемая система лучше конкурирующего решения с точки зрения общей эффективности. Для трех типичных горячих / средних / холодных дней в сети суточные тепловые потери предлагаемой и низкотемпературной систем составляют 155,2 / 557,5 / 913,4 кВтч и 182,3 / 692,8 / 1053,2 кВтч соответственно.

Ключевые слова

Централизованное теплоснабжение со сверхнизкими температурами

Районный тепловой насос

Трехтрубный

Термодинамический анализ

Рекомендуемые статьиЦитирующие статьи (0)

Полный текст

© 2019 Elsevier Ltd. Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Как согреться и сэкономить на счетах за электроэнергию этой зимой

В то время как американцы продолжают принимать меры предосторожности для борьбы с распространением COVID-19, многие люди будут проводить еще больше времени дома с наступлением холодов. В результате домохозяйства могут получать более высокие счета за электроэнергию из-за того, что отопление, свет и компьютеры остаются включенными при понижении температуры и по мере того, как работа продолжает перемещаться из офиса в дом.Дополнительные расходы будут особенно серьезными для людей, не имеющих работы или сталкивающихся с другими проблемами, вызванными пандемией, а также для домохозяйств с низким доходом и цветных сообществ, которые уже тратят большую часть своего дохода на энергию.

К счастью, есть способы сократить расходы на отопление и другие расходы на электроэнергию и по-прежнему поддерживать комфорт в наших домах, когда погода становится холоднее. Вот несколько советов по энергосбережению, которые помогут сократить расходы, поскольку в холодные месяцы вы проводите еще больше времени в помещении.

Сохраняйте тепло внутри

Один из лучших способов сохранить тепло - это убедиться, что в вашем доме нет утечки тепла. До трети теплопотерь в обычном доме происходит через окна и двери. Воздух также может попадать в дом или выходить из него через щели и щели внутри вашего дома, такие как электрические розетки, плинтусы и чердачные люки. Закройте эти отверстия, чтобы в доме было меньше сквозняков и чтобы внутри оставался теплый воздух. Герметизация протечек может сэкономить среднему домохозяйству от 10 до 20 процентов ежегодных счетов за отопление и охлаждение, или до 166 долларов в год.Герметизация окон может сэкономить вам дополнительно от 5 до 10 процентов в год на счетах за отопление и охлаждение, или до 83 долларов в год.

Закрытие шторы зимой помогает снизить до 10 процентов теплопотери из теплого помещения. Если повесить шторы близко к окнам, они помогут предотвратить до четверти этой потери тепла. Однако открывание штор на залитых солнцем окнах в течение дня может помочь повысить температуру за счет солнечной энергии. Просто не забудьте закрыть шторы на ночь или на окнах, на которые не так много солнца.Понижайте термостат на 7-10 градусов по Фаренгейту на восемь часов в день, чтобы ежегодно экономить до 10 процентов на счетах за отопление и охлаждение (около 83 долларов в год для средней семьи).

Поверните термостат вниз

Понижение температуры термостата на 10–15 градусов во время сна также может помочь сэкономить примерно 10 процентов на счетах за отопление. Умный термостат также можно запрограммировать в зависимости от того, когда вы обычно находитесь дома или в отъезде, и какую температуру вы предпочитаете в это время.Некоторые интеллектуальные термостаты даже позволяют управлять системой отопления (и охлаждения) по телефону, голосом или через мобильное приложение. Стоимость умного термостата может варьироваться от 130 до 200 долларов, но в конечном итоге он может окупиться, так как может сэкономить около 180 долларов в год на расходах на электроэнергию.

Регулярно проверяйте и заменяйте фильтр печи

Это также хорошее время для базового обслуживания ваших систем отопления и охлаждения. Убедитесь, что фильтры печи чистые, чтобы оборудование не работало тяжелее, чем должно быть.Некоторые фильтры можно чистить и использовать повторно, но другие необходимо полностью заменять, поэтому проверьте требования к обслуживанию вашей модели. Подумайте о том, чтобы позвонить специалисту по HVAC (отоплению, вентиляции и кондиционированию воздуха), чтобы оценить вашу систему на предмет дальнейших улучшений.

Используйте устройства эффективно

Многие люди постоянно используют технику для работы, учебы, развлечений и общения, особенно когда мы проводим больше времени в помещении в холодную погоду. Это может увеличить потребление энергии и счета. Использование режима энергосбережения на ваших устройствах, приборах и даже на некотором нагревательном оборудовании может иметь большое значение для легкого снижения энергопотребления без ущерба для производительности.В зависимости от ваших продуктов это также может называться «режим пониженного энергопотребления», «экономия заряда батареи» или что-то подобное.

Убедитесь, что на вашем телевизоре выбраны стандартные или нормальные настройки изображения и что включены энергосберегающие функции, такие как автоматическая регулировка яркости. Включите «автоматическое выключение» на игровой консоли, чтобы устройство перешло в режим пониженного энергопотребления, когда оно не используется. По оценкам ENERGY STAR, использование этих функций управления питанием может сэкономить до 30 долларов в год. Также избегайте доступа к потоковому видео через игровую консоль.Игровая консоль может использовать как минимум в 10 раз больше энергии для потоковой передачи фильма, чем, скажем, коробка Roku или приложение на вашем смарт-телевизоре.

Выключите устройства, которые вы не используете. Если вам нужен удлинитель для подключения большего количества устройств и оборудования, а также для упрощения их одновременного отключения, подумайте о расширенном удлинителе, чтобы уменьшить потери электроэнергии от простаивающих устройств, которые все еще могут потреблять электроэнергию в режиме ожидания. У Министерства энергетики есть дополнительные советы по сокращению потерь энергии от устройств, которые могут выглядеть выключенными, но все еще используют электричество, также известных как «энергетические вампиры».”

Вот еще несколько советов для некоторых из наиболее энергоемких бытовых приборов в наших домах:

  • Используйте холодную воду для стирки и стирайте полную загрузку, чтобы сэкономить на энергии и нагреве воды.
  • Старайтесь не открывать дверцу духовки, чтобы проверить пищу - температура может упасть на 25 градусов, что потребует больше энергии для повторного нагрева.
  • Понижение температуры водонагревателя со 140 градусов до 120 градусов потенциально может сэкономить вам до 400 долларов в год - и вы не заметите разницы.
Выберите правильное освещение и бытовую технику

Покупаете новые устройства и бытовую технику? Посетите веб-сайт ENERGY STAR, чтобы узнать, какие модели получили сине-белый ярлык как самые эффективные на рынке, что означает, что ваши счета за коммунальные услуги будут ниже. Необходимо заменить лампочки? Выберите светодиоды. Они позволят вам хорошо освещать видеовстречи и сэкономить деньги. Всего одна светодиодная лампа может сэкономить вам 50 долларов и более в течение срока ее службы - в среднем в семье есть не менее 40 розеток, поэтому ваши сбережения быстро увеличиваются.

Продолжение оставаться дома в ближайшие месяцы вызовет множество проблем, таких как более высокие счета за отопление, в дополнение к уже существующим бремени и трудностям, связанным с пандемией. Эти советы помогут вам чувствовать себя комфортнее при понижении температуры. Сохраняйте тепло и оставайтесь в безопасности в этот зимний сезон.

Какой самый энергоэффективный водонагреватель?

Из всех устройств, которые конкурируют за внимание домовладельца, от роботов-пылесосов до дверных замков с функцией видеонаблюдения, которые одновременно служат охранниками, стандартный водонагреватель на 50 галлонов, скорее всего, будет проигнорирован.Скрытый от глаз в подвале или в темном кладовке, высокий металлический цилиндр, который нагревает воду для наших раковин и душевых, обычно надежно работает в течение десяти или более лет при минимальном обслуживании или вообще без него.

Фото Ребекки Гринфилд для NRDC

Но наступит день, когда в надежном водонагревателе возникнет утечка и он отключится навсегда, что вызовет срочный вызов сантехника. И лучше не ждать так долго. «Технологические достижения и повышение энергоэффективности, обнаруженные в новом поколении экологически чистых водонагревателей с тепловым насосом (HPWH), делают их достойным вложением для всех, кто хочет одновременно сократить выбросы углерода и счета за коммунальные услуги», - говорит Пьер Дельфорж, старший научный сотрудник здания NRDC. команда по декарбонизации.HPWH, которые производят тепло с использованием той же технологии, что и холодильники, чтобы оставаться холодными, не выделяют выбросов и выполняют работу, потребляя от половины до трети энергии обычного электрического резистора или газового нагревателя.

«Принципиальным моментом в этой технологии является то, что она на 300–400 процентов более эффективна, чем обычное отопление, и потребляет гораздо меньше энергии для обеспечения того же уровня обслуживания», - говорит Делфорж. Вот все, что вам нужно знать, чтобы переключиться.

Снижение затрат

В настоящее время водонагреватели всех типов составляют 19 процентов от общего потребления.Энергопотребление S. домашних хозяйств - больше, чем приготовление пищи и охлаждение вместе взятые. Примерно 40 процентов домов в Америке оборудованы электрическими нагревателями сопротивления, которые без нужды потребляют чрезмерное количество энергии из национальной электросети и способствуют увеличению счетов за коммунальные услуги. Воздействие водонагревателей на газе и пропане, которые сейчас работают в половине всех домов в США, еще хуже: они сжигают ископаемое топливо, выделяя парниковые газы и опасные токсины, такие как оксиды азота, что было связано с многочисленными респираторными заболеваниями.

В отличие от обычных газовых обогревателей, которые вырабатывают тепло в результате сжигания загрязняющих веществ, или электрических обогревателей, в которых используется тот же тип механизма, что и в тостере, в HPWH используется энергоэффективный компрессор, который собирает тепло из атмосферы и концентрирует его в резервуаре для хранения воды. Результат: экономия для среднего американского домохозяйства из четырех человек составляет около 350 долларов в год на счетах за электроэнергию или 3750 долларов в течение срока службы типичного HPWH, согласно веб-сайту для потребителей Energy Star Министерства энергетики США.(Фактическая экономия будет варьироваться в зависимости от местоположения и муниципального или частного предприятия, которое поставляет электроэнергию в ваш дом. )

Энергоэффективность жилых домов - важный инструмент в решении проблемы изменения климата, и внедрение более экологичных технологий, подобных этой, является значимым вкладом для домовладелец, стремящийся продвинуть вперед низкоуглеродную экономику. «Мы добились больших успехов в декарбонизации электроэнергетики, и мы продвигаемся вперед в транспортном секторе с более высокими стандартами эффективности и электрификацией транспортных средств», - говорит Делфорж.«Но чтобы вывести нас на траекторию, нам также необходимо использовать чистую энергию из сети для обезуглероживания домов и предприятий».

Начало работы

Обновление водонагревателя легко и очень экономично в долгосрочной перспективе. Из нескольких типов HPWH, которые сейчас доступны от уважаемых брендов, таких как A.O. Смит, Рим и Брэдфорд Уайт, модели, продаваемые как гибриды, являются самыми популярными. Помимо компрессоров, которые нагревают воду за счет улавливания тепла из окружающей среды, они оснащены дополнительными модулями погружного нагрева.Эти компоненты настроены на автоматическое включение в периоды высокого спроса, гарантируя, что горячая вода не закончится, даже когда в доме полно гостей. Верно, что первоначальная стоимость инвестиций в новую технологию HPWH (от 1100 долларов до льгот) выше, чем вы ожидаете заплатить за обычный водонагреватель (от 300 долларов). Но эти дополнительные расходы будут более чем компенсированы экономией, накопленной в течение всего срока службы устройства - в некоторых случаях всего за два-три года.Растущее число местных коммунальных предприятий предлагает стимулы для снижения первоначальной цены, что делает HPWH еще более привлекательной сделкой.

Если вы не являетесь квалифицированным сантехником (и не обладаете разрешением, требуемым многими муниципалитетами), вы, вероятно, будете полагаться на лицензированного подрядчика при покупке и установке нового обогревателя. Запланируйте поговорить с несколькими сантехниками в вашем районе, чтобы определить тех, кто имеет опыт работы с HPWH. Поскольку в настоящее время на них приходится всего 2 процента рынка водяного отопления, HPWH будут незнакомой территорией для многих подрядчиков, которые могут даже попытаться увести вас от энергоэффективных вариантов просто потому, что они более знакомы со стандартными нагревателями.Квалифицированный специалист также может посоветовать вам, какой бытовой прибор выбрать для вашего дома; многие муниципальные предприятия перечисляют на своих веб-сайтах местных квалифицированных подрядчиков.

Как показывает опыт, вы можете выбрать обогреватель с резервуаром для воды большего размера, чем тот, который обычно рекомендуется для размера вашей семьи, что поможет вам избежать использования менее эффективных высокопроизводительных гибридных агрегатов. вспомогательная функция. Например, резервуар большего размера, который наполняется горячей водой на ночь, предотвратит ее нехватку во время часа пик в ванной на следующее утро.Учитывая долгосрочную ценность HPWH, увеличение размера стоит дополнительных затрат. Водонагреватели с интеллектуальными термостатами, которые запускают нагрев в непиковые часы (когда спрос на электроэнергию меньше), имеют дополнительное преимущество, позволяя вам использовать чистую энергию по более низкой цене, при этом обеспечивая большое количество горячей воды, когда вы нужно больше всего. По сути, они действуют как «батареи» для хранения чистой энергии, - говорит Делфорж.

Максимизация экономии

Учитывая потенциал HPWH по смягчению воздействия на чистый воздух и изменение климата, наиболее актуальной проблемой сегодня является убедить большое количество людей принять новую технологию.С этой целью правительства штатов и местных органов власти и коммунальные компании теперь предлагают такие стимулы, как скидки при пересылке по почте в момент покупки (например, 1000 долларов от ConEdison в Нью-Йорке и в Southern California Edison, например), налоговые льготы и скидки на электроэнергию. Обратитесь в местную коммунальную компанию или муниципальный район, чтобы изучить возможные варианты. «Скорее всего, если у вас есть электрический водонагреватель сопротивления, вы сможете получить стимул для использования водонагревателя с тепловым насосом.Если в настоящее время у вас есть газовый, пропановый или мазутный обогреватель, вы также можете приобрести его, особенно в Калифорнии и на северо-востоке », - говорит Делфорж. «И в будущем мы увидим это по всей стране».

Будущее энергосбережения: предстоящие улучшения в технологии

Energy отвечает за многое из того, что питает нашу повседневную жизнь. Это также ресурс, которым мы постоянно пытаемся управлять более эффективно и результативно, чтобы не только сохранить эти ресурсы, чтобы быть хорошими распорядителями, но и сэкономить деньги.

Частный сектор вместе с правительством США привержены разработке новых технологий, которые потребляют меньше электроэнергии, чтобы уменьшить экологические проблемы, снизить затраты и стимулировать экономику в целом. Чем меньше денег компания тратит на счета за электроэнергию, тем больше они могут потратить на найм сотрудников и расширение своего бизнеса.

Это хорошо для бизнеса - и это хорошо для Америки.

Когда вы думаете о «новых энергетических технологиях», вы можете думать просто о зеленой энергии - солнечной энергии, ветряных электростанциях и т. Д. - но этот пост больше сфокусирован на предметах и ​​продуктах, с которыми вы могли бы взаимодействовать ежедневно.Как мы можем мыть одежду и посуду более эффективно? А как насчет изоляции, которую используют наши дома и предприятия, а также термостатов, которые мы используем для их охлаждения?

Давайте подробнее рассмотрим 12 продуктов, которые могут оказать наибольшее влияние на устойчивость использования энергии в наших домах и на предприятиях в течение следующих нескольких лет:

1. Холодильники намагниченные

Исследования и разработки новых технологий охлаждения помогли увеличить экономию энергии в жилищах. Подсчитано, что холодильники, продаваемые в США. Сегодня С. потребляют примерно на 60% меньше энергии, чем двадцать лет назад. Хотя стоимость энергоэффективного холодильника может быть выше, в долгосрочной перспективе затраты на его поддержание в рабочем состоянии намного более рентабельны, чем у менее эффективной модели.

Для того, чтобы компании могли продавать холодильники, которые имеют право на экономию энергии, они должны соответствовать определенным требованиям программы Energy Star. Агентство по охране окружающей среды США (EPA) устанавливает критерии для этой программы.

В рамках программы финансирования Управления энергоэффективности и возобновляемых источников энергии Национальная лаборатория Ок-Ридж и General Electric объединились в проекте исследований и разработок в области магентокалорийного охлаждения.Их цель - построить домашний холодильник, который потребляет на 25% меньше энергии, чем нынешние конкуренты. Вместо сжатия пара команда использует технологию, известную как магнитокалорический эффект (MCE). Это процесс, в котором температура регулируется изменяющимся магнитным полем. Такой подход исключает использование хладагентов, что, в свою очередь, снижает выбросы парниковых газов.

2. Разработки в посудомоечных машинах

Покупка энергоэффективной посудомоечной машины может снизить счет за электроэнергию для семьи (при условии, что цена посудомоечной машины не более чем на 20 долларов превышает цену менее эффективного продукта).Как и в случае с энергоэффективными холодильниками, правительство требует, чтобы технология соответствовала требованиям программы Energy Star. Это важно, потому что многие коммунальные предприятия также предоставляют скидки при покупке посуды, соответствующей требованиям Energy Star.

Для улучшения энергопотребления посудомоечных машин было разработано множество новых технологий. К ним относятся датчики почвы, которые контролируют и регулируют в зависимости от степени загрязнения посуды, а также улучшенные форсунки, обеспечивающие меньшее потребление энергии.

Новейшая техника для мытья посуды разработана немецкой компанией Bosch, занимающейся проектированием и электроникой.Их команда придумала способ использовать минерал под названием цеолит для быстрой и эффективной сушки посуды, потребляя при этом всего 0,83 кВтч электроэнергии! На данный момент минусы могут перевесить плюсы, поскольку посудомоечная машина еще не доступна в США, а текущая цена, безусловно, не из дешевых. Однако очевидно, что новые технологии повлияют на будущую энергоэффективность этого устройства.

3. Тепловые насосы

Офис строительных технологий США занимается разработкой новых технологий для систем тепловых насосов.Несколько недавних научно-исследовательских проектов включают:

Многофункциональный тепловой насос

, работающий на топливе. Разработанный под руководством Национальной лаборатории Окриджа, продукт предлагает HVAC и водонагреватель для домов с общей экономией энергии от 50 до 55%. Этот новый продукт представляет собой тепловой насос с приводом от газового двигателя. Он вырабатывает тепло, охлаждение, горячую воду и аварийную электроэнергию.

Тепловой насос Vuilleumer (VHP):? Этот тепловой насос использует природный газ для охлаждения и обогрева любого помещения, а также для производства горячей воды.Чтобы повысить эффективность цикла, насос был разработан с горелкой сгорания со сверхнизким выбросом вредных веществ и теплообменниками. В этом продукте, разработанном Thermolift и несколькими партнерами, не используются хладагенты, что снижает затраты на электроэнергию, выделяет меньше парниковых газов и облегчает работу энергосистемы.

Тепловые насосы подпадают под Федеральную программу управления энергопотреблением (FEMP), которая требует, чтобы компании соответствовали определенным стандартам, чтобы претендовать на участие в программе Energy Star. Тепловые насосы также классифицируются Управлением по энергоэффективности и возобновляемым источникам энергии как новая, недостаточно используемая технология. Это оказывает значительное влияние на общие цели исследований и разработок компаний, разрабатывающих продукты такого типа. Это хороший показатель того, что даже более инновационные технологии тепловых насосов в конечном итоге достигнут и улучшат рынок.

4. Стирка и сушка одежды

Что касается стиральных машин, продукты программы Energy Star включают несколько передовых технологий, позволяющих снизить потребление энергии и воды на треть. Например, устройства с фронтальной загрузкой потребляют меньше воды, потому что они не заполняют всю ванну.Это приводит к снижению затрат на электроэнергию, потому что меньше воды означает меньше энергии, используемой для отопления. Эти энергоэффективные машины также используют более высокую скорость отжима для удаления воды с одежды, что помогает сократить время, которое одежда должна проводить в сушилке.

В настоящее время значительное количество брендов сушилок для одежды в США используют электрические резистивные нагреватели. Этот тип технологии не очень экономичен или энергоэффективен, поскольку он потребляет около 71 ТВт-ч в год.

Национальная лаборатория Ок-Ридж (и партнеры) работают над созданием сушилки для одежды с тепловым насосом.Эта новая технология будет включать цикл теплового насоса, в котором для сушки одежды используется тепловая энергия. Он потребляет примерно на 60% меньше энергии и устраняет проблемы с удалением влаги.

5. Освещение для дома и бизнеса

Светодиоды

постепенно меняют то, как жители США освещают свои дома и предприятия. В настоящее время лучшие светодиодные лампы, доступные на рынке, потребляют на 85% меньше энергии, что обеспечивает значительную экономию, более низкие затраты и минимальное обслуживание.

В настоящее время U.S. Управление энергоэффективности и возобновляемых источников энергии отвечает за более десятка проектов по исследованиям и разработкам светодиодов. К ним относятся:

  • Повышение теплопроводности
  • Экономичные и высокоэффективные светильники нового поколения
  • Сверхкомпактные светодиоды теплого белого цвета
  • Полная интеграция с системами независимо от типа или материала держателя схемы
  • Инновационные системы освещения офисов и учебных аудиторий

6.

Умные термостаты

На рынке представлено несколько термостатов, которые меняют способ обогрева и охлаждения домов и предприятий.Хотя сам по себе технология не нова, многие компании прилагают все усилия, чтобы разработать термостаты, которые интегрируются с энергией потребитель? Ы образом жизни (и другими устройствами), чтобы помочь снизить затраты и потребление энергии.

Новейшие интеллектуальные термостаты включают Wi-Fi, интеллектуальный климат-контроль и элегантный дизайн. Они могут определить, когда кто-то находится дома или в офисе, узнать о предпочтениях в области отопления и охлаждения и позволить пользователям контролировать устройство и управлять им через смартфон.

Это, вероятно, окажет большое влияние в будущем, поскольку владельцы новых домов и предприятий ищут способы уменьшить свой углеродный след. Кроме того, конкуренция начинает усиливаться, поскольку эта технология привлекает внимание других энергетических компаний, которые разрабатывают собственные продукты.

7. Чистое приготовление пищи? Плиты и грили

Использование наших духовок и плит способствует использованию энергии в периоды пиковой энергии. Для тех, кто использует дровяную печь, время, энергия и затраты, необходимые для сбора материала, необходимого для разжигания огня, не облегчают повседневную задачу приготовления пищи.

GoSun Stove, вошедший в десятку самых крутых гаджетов на выставке CES 2016 по версии TechCrunch, представляет собой новый продукт, который может готовить еду, используя солнечную энергию. Пища готовится внутри солнечной трубки, которая поглощает солнечный свет и преобразует эту энергию в тепло. Грили могут нагреться до 550 градусов за 10-20 минут.

8. Теплоизоляция дома

На рынке представлено множество различных типов изоляции. При этом многие из них оказывают негативное воздействие на окружающую среду, работают неэффективно и в конечном итоге приводят к увеличению общей суммы счета за электроэнергию.

Сеть промышленной науки и технологий недавно разработала новый тип пенопласта. Этот материал безвреден для окружающей среды, поскольку для продувания изоляции в нем используется углекислый газ вместо фторуглеводорода. Это экономичное решение, которое превосходит своих предшественников. Изоляция может использоваться в различных областях, таких как фундамент и стены зданий, а также вокруг систем отопления, вентиляции и кондиционирования воздуха.

9. Самозатеняющиеся окна

Недавно разработанная оконная технология поможет пользователям автоматически обогревать и охлаждать свои дома.

После установки в этих специальных окнах используются датчики и микропроцессоры для изменения оттенка стекла в зависимости от нескольких элементов. Эти элементы включают солнечный свет и время суток, которые основываются на алгоритмах, разработанных с учетом потребностей и уровней комфорта потребителя.

10. Технология строительства с нулевым потреблением энергии

Новые инициативы, выдвинутые Управлением по энергоэффективности и возобновляемым источникам энергии США, вероятно, изменят повседневное использование энергии в коммерческих зданиях.Используя сочетание возобновляемой и эффективной энергии, здание может генерировать ресурсы, необходимые для питания и самообслуживания. Цель состоит в том, чтобы попытаться достичь нулевого потребления энергии, чтобы здание не оказывало влияния на окружающую среду и экономичное потребление энергии.

Первым шагом в этом амбициозном проекте является строительство зданий с использованием технологий, позволяющих создавать эффективные системы, устройства, операции, техническое обслуживание и изменения в поведении пользователей. В качестве альтернативы можно провести анализ существующего здания, чтобы определить области, в которых можно внести изменения.Любые выдающиеся факторы устраняются путем внедрения технологий производства возобновляемой энергии на месте.

11. Эволюция потолочного вентилятора

Потолочные вентиляторы - полезная хозяйственная вещь. Проблема в том, что они практически не изменились за более чем сто лет. Они предназначены для обдува воздуха вниз и могут иметь одну из трех скоростей.

Подобно интеллектуальному термостату, новые технологии позволяют пользователю управлять потолочным вентилятором из приложения на своем смартфоне.Он также включает датчики, которые определяют движение и факторы окружающей среды, которые влияют на необходимость охлаждения помещения. Некоторые потолочные вентиляторы могут даже интегрироваться с другими продуктами, чтобы сэкономить время пользователей и еще больше снизить потребление энергии.

Программа Energy Star также применима к потолочным вентиляторам, прежде всего потому, что они включают в себя осветительный элемент. Их сертифицированная продукция на 60% эффективнее и позволяет ежегодно сокращать расходы на электроэнергию на 15 долларов.

12. Cool Roofs

Холодные крыши - это новый способ лучше контролировать температуру в жилых или коммерческих зданиях.Эти типы крыш используют технологию отражения солнечного света для более низких температур. Установка такой крыши может снизить местную температуру воздуха и пиковую потребность в электроэнергии, а также сократить выбросы углекислого газа, двуокиси серы, оксидов азота и ртути.

Недавние исследования и разработки флуоресцентных пигментов Национальной лабораторией Лоуренса Беркли позволили еще больше усовершенствовать эту технологию. Эти пигменты темного цвета, но очень эффективны с точки зрения эффективного солнечного отражения.

В солнечных батареях

также наблюдается сдвиг в технологиях. Недавние исследовательские и опытно-конструкторские работы показали потенциал создания панелей из перовскита вместо других материалов, таких как кремний. Это приведет к более дешевому продукту, что в конечном итоге может повлиять на доступность этого продукта.

4 НОВЫЕ ЭНЕРГОЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ, ПРИМЕНЯЕМЫЕ В ПРОИЗВОДСТВЕННЫХ ПРОЦЕССАХ

В последние годы благодаря множеству технологических инноваций процессы в пищевой промышленности стали более эффективными, менее громоздкими, безопасными, менее энергоемкими и более экологичными.

В этом разделе представлены несколько проверенных методов и процессов сепарации, термической обработки, борьбы с бактериями и рекуперации энергии. Поскольку цель этого руководства - указать читателю на решения, применимые в промышленном контексте, мы решили ограничиться методами, которые хорошо зарекомендовали себя и доступны на рынке. Эти технологии проиллюстрированы практическим применением, демонстрирующим их энергоэффективность в секторах переработки мяса, напитков и молочных продуктов.

Обратите внимание, что через несколько лет на рынке ожидается появление нескольких других технологий, которые все еще разрабатываются.

4.1 Мембранная фильтрация

Мембранная фильтрация используется для удаления из жидкостей частиц, слишком мелких для обычных методов фильтрации, таких как белки, бактерии, вирусы и растворенные соли. Его также можно использовать для концентрирования, фракционирования, очистки и регенерации жидкостей, частично или полностью заменяя традиционные методы разделения испарением и центрифугированием.

Рисунок 4-1 - Разделительная способность различных технологий мембранной фильтрации

Текстовая версия

Стрелка проходит горизонтально через центр изображения. Вдоль стрелки отображается «Размер пор мембраны в микронах» с приращениями следующим образом: 10, 1, 0,1, 0,001, 0,0001. Над стрелкой появляются желтые прямоугольники со следующими обозначениями: дрожжи (10), бактерии (1), коллоидные эмульсии (от 1 до 0,1), вирусы (0,1), органические накромолекулы (от 0,1 до 0,001), органические соединения (0.001), растворенные соли (0,0001). Под стрелкой появляются синие прямоугольники со следующими обозначениями: микрофильтрация (от 10 до 0,1), ультрафильтрация (от 0,1 до 0,001), нанофильтрация (от 0,001 до 0,0001) и обратный осмос (0,0001).

В агроперерабатывающей промышленности мы, вероятно, встретим четыре типа мембранных технологий в зависимости от области применения: микрофильтрация, ультрафильтрация, нанофильтрация и обратный осмос (RO). Эти методы различаются по их разделительной способности, которая является функцией размера пор мембраны, и молекулярной массой частиц, которые мы хотим удалить.

Несмотря на то, что эти технологии уже доказали свою ценность в нескольких промышленных приложениях, остается достаточно возможностей для роста.

Во многих случаях они могут частично или полностью заменить другие технологии и снизить потребление энергии.

Таблица 4.1 - Основные области применения мембранных технологий в пищевой промышленности и производстве напитков
В точке входа в процесс

Очистка подпиточной воды котла

Подготовка и бактериальный контроль технологической воды

Стандартизация молока

Напитки, пиво, молоко, мясо

Напитки, пиво, молоко, мясо

Молоко

В процессе

Осветляющие соки, напитки, пиво

Соки концентрированные

Удаление спирта

Стандартизация молока

Молоко предварительного концентрирования

Деминерализирующая сыворотка

Устранение микроорганизмов и бактерий

Белки регенерирующие

Напитки, пиво

Напитки

Пиво

Молоко

Молоко

Молоко

Молоко, пиво, напитки

Молоко мясное

На выходе из процесса

Регенерация и переработка моющих растворов (вода и реагенты)

Очистка сточных вод, оборотная вода и реагенты

Молоко, пиво, мясо

Напитки, пиво, молоко, мясо

Основные преимущества мембранных технологий:

  • Заметное снижение энергопотребления по сравнению с традиционными тепловыми процессами
  • проверенное применение в нескольких промышленных секторах, особенно в молочной
  • экологические выгоды, возникающие в результате увеличения потенциала переработки и сокращения или отказа от использования определенных химикатов

Примеры промышленного применения
Различные промышленные применения мембранной фильтрации проиллюстрированы следующими примерами.

Мембранная фильтрация - Производство напитков

Тип деятельности: предприятие по переработке фруктов в США
Применение: производство концентратов фруктовых соков
Срок размещения: с 1990 по 1999 год, 14 участков
Экономические данные: нет данных

Результаты
- тепловая энергия, необходимая для испарения: 1,162 мегаджоулей (МДж) / килограмм (кг) испарившейся воды
- электрическая энергия, необходимая для мембранной фильтрации: 0,232 МДж / кг (0,065 кВтч / кг)
- снижение энергии на 80% требования, соответствующие 37-процентному сокращению счета за электроэнергию (4 доллара за гигаджоуль для природного газа, 0 долларов США за гигаджоуль для природного газа.06 / кВтч для электроэнергии и 75% КПД при производстве пара)

Методика


Предварительное концентрирование фруктовых соков с помощью модуля ультрафильтрации, за которым следует модуль обратного осмоса, в котором мембраны избирательно отделяют воду от других компонентов сока. Затем концентрацию продолжают в испарителе.

Проект выполнен
Концентрирование свежих фруктовых соков происходит в два этапа:
- От начальных 5% до 10% общего сухого вещества: операция устраняет 50 л воды на 100 л свежего сока за счет использования мембранной процедуры, сочетающей ультрафильтрацию с обратным осмосом, что приводит к менее энергоемкому процессу, чем испарение.
- От 10 процентов до конечной концентрации, которая составляет от 40 до 62 процентов общего сухого вещества, в зависимости от точной природы фруктового сока: Затем сок концентрируется с помощью испарителя.

Мембранная фильтрация - Молочная промышленность

Тип бизнеса: предприятие по переработке молока в Канаде
Применение: концентрация сырной сыворотки
Дата внедрения: 1990
Затраты, связанные с мембранной фильтрацией: 400000 долларов США (на установку обратного осмоса) + 83000 долларов США в год (операционные расходы)
Срок окупаемости: 3.6 лет

Результаты


- Энергия, используемая для концентрирования сыворотки, снижена на 90 процентов (173 000 долларов в год).
- Потребление пара снижено более чем на 95 процентов.
- Годовое потребление электроэнергии увеличилось на 60 МВтч (приблизительно 2400 долларов в год) для оборудования обратного осмоса, а ежегодная стоимость замены мембраны составляет 64000 долларов.

Проект

выполнен
Для концентрирования 12500 л / час сыворотки с содержанием сухого вещества от 6 до 21 процента, традиционный испаритель тройного действия, не оборудованный механической или тепловой рекомпрессией пара и питаемый паром, произведенным в бойлере, был заменен на RO единица.Несмотря на то, что использование установки мембранной фильтрации привело к небольшому увеличению потребления электроэнергии, эта технология значительно снижает потребность в тепловой энергии, поскольку концентрирование происходит с разделением воды в ее жидком состоянии, которое не требует испарения.

Ограничения технологии
Есть пределы использования мембранной фильтрации в процессе концентрирования. Хотя детали меняются от одного производителя к другому, RO обычно используется для предварительного концентрирования сыворотки до 25 процентов общего содержания сухого вещества.Для более высоких уровней концентрации требуются более традиционные методы выпаривания.

4.2 Тепловые насосы

В этом руководстве нас интересуют тепловые насосы с замкнутым контуром, в которых используется промежуточная жидкость, называемая хладагентом. Системы с разомкнутым контуром используются в технологиях механической рекомпрессии пара (MVR), которые рассматриваются в разделе 4.3.

Тепловые насосы - это холодильные аппараты компрессионного типа, предназначенные для передачи тепла для обогрева, а не для охлаждения.Они улавливают тепловую энергию при относительно низких температурах (источник холода), нагревают ее и передают в радиатор.

В испарителе низкотемпературный источник тепла передает энергию хладагенту, который затем испаряется. Температура и давление компрессора увеличиваются, а хладагент остается в парообразном состоянии. В конденсаторе хладагент передает накопленную энергию радиатору. На выходе из конденсатора расширительный клапан снижает давление хладагента. Затем жидкость под низким давлением возвращается в испаритель для перезапуска цикла.

- Область применения: мясная, молочная промышленность и производство напитков, требующие нагрева и охлаждения. Процессы испарения и концентрирования.
- Возможности: тепловые насосы обычно используются для охлаждения и кондиционирования воздуха, но их привлекательность в секторе переработки сельскохозяйственной продукции заключается в том, что они также могут использоваться для повышения температуры жидкости, которая на несколько градусов ниже, чем ее можно использовать.
- Ограничения: Недостаток знаний и период окупаемости, который обычно превышает 2 года, являются основными препятствиями на пути промышленного использования тепловых насосов.

Пример промышленного применения
Промышленное применение теплового насоса в одном из секторов, рассматриваемых в данном руководстве, проиллюстрировано в следующем примере.

Тепловой насос - мясоперерабатывающая промышленность

Тип деятельности: птицеперерабатывающий завод в Канаде
Применение: темперирование перед нарезкой и разделкой замороженных четвертин
Дата внедрения: 1987
Затраты, связанные с тепловым насосом: 165 000 долларов США (инвестиции) + 9 500 долларов США в год (эксплуатационные расходы)
Срок окупаемости: 2 .9 лет

Результаты


- Годовые затраты на электроэнергию уменьшены на 56 000 долларов (производство горячей воды за счет рекуперации тепла из испарительного конденсатора).

Методика


В этой процедуре тепловой насос нагревает воду до температуры, которая делает ее пригодной для использования в производственных процессах на предприятии, за счет рекуперации и использования тепла конденсаторов, которые ранее выводились наружу.

Проект сдан
Первый этаж системы включает улавливание тепла от теплого хладагента (в данном случае аммиак [Nh4]) на выходах холодильных компрессоров и предварительный нагрев воды (в среднем от 12 ° C до 25 ° C) с теплообменниками, использующими водно-гликолевый контур в качестве промежуточного звена.
Второй и основной этаж рекуперации использует тепловой насос, подключенный к системе производства льда на основе аммиака, для нагрева воды, предварительно нагретой на первом этапе. Хладагент теплового насоса (R-12) улавливает тепло конденсации аммиака и передает его воде в конденсаторе теплового насоса.
Таким образом, система позволяет нагревать воду до температуры от 40 ° C до 63 ° C, что делает ее пригодной для непосредственного использования в производственных процессах.

4.3 Механическая и термическая рекомпрессия пара

MVR - это технология, принадлежащая к семейству тепловых насосов с открытым контуром, которые особенно хорошо подходят для процессов испарения.MVR позволяет рекуперировать скрытое тепло, содержащееся в паре, которое часто теряется в традиционных процессах. Пар, образующийся при испарении, рекуперируется компрессором, который увеличивает давление и температуру на несколько градусов выше точки кипения жидкости.

После того, как этот пар достигает высокой температуры и давления, он становится источником тепла для испарения, поскольку он выделяет скрытое тепло. Рекуперация энергии, содержащейся в паре, позволяет значительно сэкономить энергию. Фактически, для испарения 1 м 3 пара требуется всего 30 кВтч по сравнению с 800 кВтч при традиционном испарении.

- Области применения: концентрирование молока, пивоварение (котел для сусла), концентрирование стоков, дистилляция, сепарация.

- Потенциал: помимо снижения энергопотребления, MVR также может значительно сократить потребности в охлаждении (вода, градирня) и, в некоторых случаях, устранение запахов.

- Ограничения: Основное препятствие, которое должна преодолеть эта технология, заключается в том, что она малоизвестна в промышленных кругах.

- Комментарий: Также можно увеличить давление и температуру пара, производимого испарением, с помощью парового эжектора.Это тепловая рекомпрессия пара (TVR), и при меньших вложениях, чем для типичной системы MVR, иногда можно снизить потребность в паре на 50 процентов.

Пример промышленного применения
Следующий пример иллюстрирует промышленное применение рекомпрессии пара (механического или термического) в некоторых секторах, рассматриваемых в данном руководстве.

Механическая рекомпрессия пара (MVR) - Молочная промышленность
Тип бизнеса: предприятие по переработке молока в США
Применение: концентрация сырной сыворотки
Дата внедрения: 1988
Срок окупаемости: 4 года

Результаты
- Устранена потребность в паре, производимом котельной на объекте.
- Снижение энергопотребления с чистой годовой экономией в размере 165 000 долларов США (годовая экономия на паре составляет 211 000 долларов США минус 46 000 долларов США годовых эксплуатационных расходов при эксплуатации дополнительного компрессора).

Проект сдан
Испаритель с односторонним действием, который первоначально питается паром, производимым в бойлере, концентрирует сырную сыворотку. Центробежный компрессор восстанавливает пар, образующийся при испарении, и доводит его в сжатом состоянии до температуры выше точки кипения жидкости.Сжатый таким образом пар используется в качестве источника тепла для испарителя: пар отводит скрытое тепло, когда касается более холодной жидкости, и, таким образом, обеспечивает тепло, необходимое для испарения.

Ограничения технологии
Несмотря на то, что MVR обещает значительную экономию энергии, обычно требуются значительные предварительные вложения, которые напрямую зависят от количества воды, которая должна быть испарена. Следовательно, в случае очень разбавленных жидкостей целесообразно предварительно сконцентрировать раствор перед выпариванием: часто лучше всего оказывается комбинация мембранная фильтрация + испарение MVR.

4.4 Когенерация - комбинированное производство тепла и электроэнергии

Традиционные системы выработки электроэнергии имеют средний КПД от 35 до 40 процентов (до 55 процентов для систем с комбинированным циклом), выбрасывая в окружающую среду от 60 до 65 процентов энергии, содержащейся в их топливе. Когенерация восстанавливает эту потерю тепла и использует ее для нужд отопления или охлаждения. Отопление включает производство пара и горячей воды. Для охлаждения необходимо использовать абсорбционные охладители, преобразующие тепло в холод.Таким образом, за счет одновременной выработки электроэнергии и тепла когенерационные установки имеют более высокий общий КПД, который может достигать 90 процентов. Это означает экономию топлива до 40 процентов по сравнению с производством электроэнергии и тепла с использованием тепловых электростанций и паровых котлов.

Рисунок 4-2 - Производство тепла и электроэнергии с помощью когенерации

Источник: RETScreen ® International, анализ проектов чистой энергии - слайд

анализа проектов когенерации Текстовая версия

Эффективность рекуперации тепла (55/70) = 78.6%
Общий КПД ((30 + 55) / 100) = 85,0%
Топливо (100 единиц) -> Система питания (-> Тепло + Выхлоп [70 единиц]
Приводит к:
-> HRSG [-> Выхлопные газы (15 единиц)] -> [Тепло (55 единиц)] Нагревательная нагрузка -> [назад к HRSG])
-> Генератор -> (Мощность [30 единиц]) Мощность нагрузки

Рисунок 4-3 - Распределение промышленных когенерационных установок в Канаде

Текстовая версия
Продукты питания и напитки 6%
Лесное хозяйство 35%
Химия 26%
Шахты 5%
Нефть и газ 10% 4
Нефтяные пески 18%

Источник: Когенерационные установки в Канаде, CIEEDAC, 2006

Поскольку электричество легче передавать на большие расстояния, чем тепло, промышленные когенерационные установки обычно располагаются близко к месту, где будет использоваться тепловая энергия.Эти объекты также масштабируются для удовлетворения требований к теплу конкретного процесса. Если количество произведенной электроэнергии ниже технологических требований, остаток необходимо покупать в местной сети. И наоборот, если генерируется избыток электроэнергии, ее можно продать в сеть. Однако это предполагает, что подключение к сети соответствует очень строгим стандартам и что существуют правила покупки и продажи электроэнергии. В связи с недавним дерегулированием рынка электроэнергии, завершенным в одних провинциях и продолжающимся в других, промышленность отныне может предусматривать строительство когенерационных станций и возможность продавать излишки электроэнергии в сеть.
В Канаде существующие когенерационные установки находятся в секторе лесной продукции (в котором задействовано много паровых турбин), в химической промышленности и в нефтеносных песках (где установлены самые мощные установки). Системы когенерации также имеются на 15 предприятиях сектора пищевых продуктов и напитков (переработка кукурузы, ликеро-водочные заводы, пивоваренные заводы, сахарные заводы, птицеводство и т. Д.).

В 2005 году мощность когенерационных установок, обеспечивающих теплом предприятий пищевой промышленности и производства напитков, составила 351 мегаватт электроэнергии (МВт).Их средний КПД составлял 80 процентов, а их среднее отношение тепловой энергии к электрической мощности (HTPR) составляло 6,3. Это означает, что на каждый киловатт-час произведенной электроэнергии на этих объектах было произведено 6,3 кВтч полезного тепла.

Основные компоненты и характеристики когенерационной системы

Когенерационная установка состоит из следующих четырех основных компонентов:

  1. первичный двигатель, обычно турбина или двигатель внутреннего сгорания
  2. электрогенератор, приводимый в действие тягачом
  3. новый котел-утилизатор для производства пара из энергии, содержащейся в выхлопных газах турбины или двигателя внутреннего сгорания.Рекуперацию энергии можно максимизировать, установив стандартный экономайзер на выходе из котла-утилизатора (температура дымовых газов, которая колеблется от 120 ° C до 150 ° C, в зависимости от топлива, также может быть снижена). Если для процесса требуется значительный объем горячей воды, конденсационный экономайзер может следовать за экономайзером или заменять его (температура дымовых газов может быть снижена до 50 ° C или 60 ° C). Сноска 15
  4. система управления

Наиболее часто используемыми источниками энергии являются пар (паровая турбина) и природный газ (газовый двигатель и турбина), хотя в некоторых приложениях используется дизельное топливо и биогаз.

Если HTPR (отношение тепла к мощности) меняется в течение дня или по сезонам, любое изменение количества вырабатываемой электроэнергии или покупка электроэнергии может привести к значительной потере прибыли. Поэтому предпочтительнее адаптировать HTPR к потребностям объекта, используя дополнительную горелку на входе котла-утилизатора или дополнительный котел.

Оптимизация когенерационной системы (т.е. адаптация ее к потребностям в тепле) дает следующие основные преимущества:

  • Экономические и экологические преимущества:
    • Повышение общей эффективности преобразования топлива в тепло и электричество
    • доступ к доходам от продажи избыточной электроэнергии в сеть
    • снижение затрат на очистку сточных вод и удаление отходов при использовании биогаза Сноска 16 , повышающая рентабельность системы
    • снижение выбросов в атмосферу, особенно диоксида углерода (CO 2 ) и оксидов азота
  • Повышенная надежность электроснабжения: когенерация снижает риск нарушения производства в случае отключения электроэнергии.
  • Децентрализованная выработка электроэнергии вблизи точки потребления ограничивает потери на линиях электропередачи.
  • Приложение было протестировано в большинстве промышленных секторов по всему миру, особенно в нескольких процессах в пищевой промышленности и производстве напитков, а также в сельском хозяйстве.

В целом когенерация требует больших инвестиций со сроком окупаемости от четырех до пяти лет. Стоимость приобретения оборудования и его подключения к технологическому процессу и электросети должны быть добавлены к стоимости строительства камеры или конструкции для снижения шума, производимого газовыми турбинами и двигателями.Таким образом, любое решение о строительстве когенерационной установки должно учитывать следующие элементы:

  • годовые потребности технологического процесса в тепловой и электрической энергии, их сезонные колебания и прогнозы будущего развития
  • потенциал для экономии энергии - Подробный энергоаудит, направленный на оптимизацию использования энергии на предприятии, должен быть проведен перед запуском любого проекта когенерации. На самом деле может случиться так, что после того, как будет создана когенерация, дальнейшее повышение энергоэффективности станет труднее.
  • вид используемого топлива и прогнозы динамики его цены и цены на электроэнергию
  • Стоимость инвестиций в оборудование и гражданскую инфраструктуру
  • действующих программ мотивации

Экономия на налогах в соответствии с классом 43.1 и 43.2 Положений о подоходном налоге

Когенерационные системы, вырабатывающие электроэнергию и тепло, которое экспортируется из системы для полезных целей, имеют право на налоговую экономию в соответствии с классом 43.1 или классом 43.2 Положения о подоходном налоге. Эти налоговые меры позволяют ускорить вычет капитальных затрат по цене:

.

- Тридцать процентов в год на основе снижения, если тепловая нагрузка не превышает 6000 БТЕ / кВтч (6330 килоджоулей [кДж] / кВтч) в случае класса 43.1 или.
- Пятьдесят процентов в год по убыванию, если расход тепла не превышает 4750 БТЕ / кВтч (5011 кДж / кВтч) и оборудование приобретается после 22 февраля 2005 г. и до 2020 г. в случае класса 43.2.

Для получения дополнительной информации об экономии налогов на оборудование для производства чистой энергии и энергосбережения см. Класс 43.1 Техническое руководство и Техническое руководство по расходам на возобновляемые источники энергии и сохранение ресурсов Канады (CRCE), или обратитесь в Секретариат классов 43.1 и 43.2.

* Для целей классов 43.1 и 43.2 тепловая мощность определяется как F / (E + H / 3413), где F - высшая теплотворная способность (HHV) приемлемого ископаемого топлива, потребляемого за год, E - валовое электрическая энергия, произведенная за год, и H - чистое тепло, отведенное из системы для полезных целей за год.

Оценка проектов когенерации

Программная модель когенерации RETScreen ® позволяет оценивать производство энергии, стоимость жизненного цикла, сокращение выбросов, финансовую жизнеспособность и риски, связанные с проектами производства электроэнергии, тепла и холода в одном или нескольких зданиях и в промышленных процессах.Модель позволяет проводить технико-экономические обоснования, которые учитывают широкий спектр возобновляемых и невозобновляемых видов топлива, и содержит базу данных с данными о климате и продуктах (например, поршневые двигатели, газовые турбины, газовые турбины с комбинированным циклом, паровые турбины, топливные элементы, микротурбины, котлы, компрессоры, тепловые насосы абсорбционного цикла и др.).

Эту модель когенерации можно бесплатно загрузить с международного веб-сайта RETScreen®: www.retscreen.net.
RETScreen ® International находится в ведении Технологического центра CanmetENERGY компании Natural Resources Canada в Вареннесе.

Таблица 4-2 - Типовые когенерационные системы
Технологии Топливо Типовая мощность (МВт) Электрический КПД Отношение тепла к мощности
(HTPR)
Общий КПД
Поршневые двигатели с искровым зажиганием Природный газ
Биогаз
Дизель
0,003 до 6 от 25 до 43% от 1: 1 до 3: 1 от 70 до 92%
Поршневые двигатели с воспламенением от сжатия Природный газ
Биогаз
Дизельное топливо
Мазут
0.2 по 20 от 35 до 45% 0,5: от 1 до 3: 1 * от 65 до 90%
Парогазовая турбина Природный газ
Биогаз
Дизельное топливо
Мазут
3 до 300 от 35 до 55% 1,1: от 1 до 3: 1 * от 73 до 90%
Турбина открытого цикла Природный газ
Биогаз
Дизель
от 0,25 до 50+ от 25 до 42% 1.От 5: 1 до 5: 1 * от 65 до 87%
Паровая турбина с противодавлением Нет 0,5 до 500 от 7 до 20% от 3: 1 до 10: 1+ до 80%
Отборная паровая турбина Нет 1 до 100 от 10 до 20% от 3: 1 до 8: 1+ до 80%

Источник: COGEN Europe (Европейская ассоциация содействия когенерации)

* Для этих систем более высокое отношение тепла к мощности может быть получено путем добавления дополнительной горелки на выходе из двигателя или турбины.

Пример промышленного применения
Промышленное применение когенерации в одном из секторов, рассматриваемых в данном руководстве, проиллюстрировано в следующем примере.

Когенерация или комбинированное производство электроэнергии и тепла - Мясоперерабатывающая промышленность

Тип бизнеса: бойня птицы и предприятие по переработке птицы в Канаде (мощность 300 000 цыплят в день)
Применение: одновременное производство электроэнергии, пара и горячей воды с использованием природного газа
Дата ввода в эксплуатацию: 1999 год
Стоимость инвестиций: приблизительно 6 миллионов долларов США
Срок окупаемости: 5.5 лет

Результаты


Установка газовой турбины мощностью 5 МВт (эл.) Позволила принять следующие меры:
- снизить затраты на электроэнергию с 0,065 долл. США / кВтч до 0,05 долл. США / кВтч (более чем на 20 процентов).
- повысить надежность электроснабжения предприятия за счет выработки электроэнергии. значительная доля потребляемой электроэнергии
- снизить потребление природного газа примерно на 4 процента для достижения общей эффективности (выработка электроэнергии и тепла) 86 процентов

Методология
Убой и переработка птицы требует строгих санитарных условий.В технологических процессах и для очистки оборудования используются большие объемы горячей воды и пара. До проекта когенерации горячая вода производилась с помощью нескольких единиц оборудования, таких как взаимосвязанная сеть котлов и тепловых насосов. Также потребовалось много электроэнергии для охлаждения упаковочных цехов и для замораживания. Ежедневно предприятие потребляет 2270 м3 3 (500 000 британских галлонов, или 1 892 706 л) горячей воды, а летом до 9,5 МВт электроэнергии.С помощью когенерации можно рационализировать производство тепловой энергии, одновременно производя электричество для питания холодильной системы предприятия.

Проект выполнен
Реализованный подход позволяет генерировать электроэнергию, пар и горячую воду с помощью когенерационной установки. Поставляемая система включает элементы, перечисленные ниже:
- газовая турбина 5,2 МВт (эл.),
- на выходе из газовой турбины, дополнительная горелка и система рекуперации тепла для производства пара для предприятия (29 484 кг / ч, 125 фунтов -сила на квадратный дюйм)
- на выходе из парогенератора, экономайзер прямого контакта, способный нагревать 1360 л (300 британских галлонов) воды до 49ºC (120ºF) каждую минуту
- отдельное здание для когенерационной установки, Таким образом, вы избежите значительных затрат на ремонт и звукоизоляцию в заведении

4.5 Анаэробная очистка сточных вод и отходов

Анаэробный процесс - один из самых многообещающих способов очистки промышленных сточных вод и отходов со значительным содержанием органических веществ. В отсутствие воздуха и кислорода некоторые бактерии превращают органические остатки из растительных, животных и химических источников в биогаз (состоящий из метана и CO 2 ), который можно использовать в качестве топлива для замены природного газа и мазута. В зависимости от специфики процесс называется анаэробной обработкой, перевариванием или ферментацией.Эти обозначения эквивалентны, и в этом руководстве мы выбрали термин анаэробная обработка (AT).

Анаэробно можно обрабатывать широкий спектр органических соединений: углеводы (крахмал, сахар, целлюлозные материалы), жиры и масла, а также белки. AT хорошо известен в Европе и Азии, где, по оценкам, действуют сотни таких промышленных систем, но в Северной Америке этот процесс по-прежнему представлен плохо - всего 12 процентов мировых предприятий.

Рисунок 4-4 - Распределение промышленных анаэробных очистных сооружений в Европе

Источник: Международное энергетическое агентство, 2001 г.

Текстовая версия
Продукты питания 40%
Пивоварни / безалкогольные напитки 25%
Винокурни 12%
Целлюлоза и бумага 9%
Химия 7%
Прочие 7%

Источник: Международное энергетическое агентство, 2001 г.

В Европе около 75 процентов промышленных автоматических трансмиссий приходится на пищевую промышленность и производство напитков, 9 процентов - на целлюлозно-бумажную промышленность и 7 процентов - на химическую промышленность.В Канаде существующие объекты в основном используются для регенерации навоза в сельскохозяйственном секторе. AT также используется на нескольких предприятиях пищевой промышленности и находит более широкое применение при утилизации остатков на целлюлозно-бумажных комбинатах.

Анаэробная обработка - принципы и характеристики

В секторе пищевых продуктов и напитков эта технология была разработана для предварительной обработки воды с высоким содержанием органических веществ. В процессе переработки около 90 процентов органических веществ превращается в биогаз, а в качестве побочного продукта производятся удобрения.Основные этапы процесса следующие:

  1. перед анаэробной обработкой иногда требуется физическая (измельчение), химическая (гидролиз) или термическая (пастеризация) предварительная обработка
  2. органическое вещество (растворенное или взвешенное в воде) подается в реактор, Footnote 17 , где в отсутствие кислорода анаэробные бактерии превращают его в биогаз и остатки (твердые или жидкие), которые можно использовать в качестве удобрения
  3. разделение продуктов (биогаза и твердых или жидких остатков) может происходить в самом реакторе или в отдельной части оборудования, расположенной ниже по потоку
  4. Сырой биогаз
  5. , который содержит от 50 до 80 процентов метана (основной элемент природного газа) и от 20 до 50 процентов CO 2 , имеет значительную теплотворную способность

    Биогаз также содержит следовые количества сероводорода (H 2 S).Если он слишком распространен, H 2 S иногда необходимо удалять из биогаза, прежде чем биогаз будет использоваться в качестве топлива.

Твердый остаток можно использовать как влажное удобрение, можно обезвоживать и использовать как сухое удобрение, а также компостировать, закапывать или сжигать.

В некоторых случаях после AT остается органический остаток. Этот остаток можно обработать обычным АТ. Конечные сточные воды затем могут быть сброшены в окружающую среду или в городскую канализационную систему по цене, которая значительно ниже, чем это было бы без AT.

Таблица 4-3 - Основные области применения для лечения анаробии в пищевой промышленности и производстве напитков
Продукты питания Жидкое молоко
Молочные продукты (сыр, масло, сливки, йогурт, мороженое, сыворотка)
Продукты бойни и мясопереработки
Овощи (консервированные или замороженные)
Рыба, морепродукты и субпродукты
Продукты из кукурузы, зерна, картофель и масличные (масла, крахмал, маргарин)
Напитки Пиво
Безалкогольные напитки
Спиртные напитки
Фруктовые соки и продукты
Вино

Основные преимущества AT демонстрируются в следующих примерах.

  • Экономические и экологические преимущества:
    • уменьшение количества сточных вод, сбрасываемых в окружающую среду или в городскую канализацию, и уменьшение запаха органических отходов
    • производство биогаза, источника энергии, который может использоваться в качестве топлива Сноска 18 в котлах или в когенерационной системе предприятия в качестве замены ископаемого топлива (природного газа или мазута)
  • Производство твердых остатков, которые можно использовать в качестве удобрений.
  • Приложение, зарекомендовавшее себя во всем мире в нескольких процессах производства продуктов питания и напитков, таких как пивоварни, ликеро-водочные заводы, молочные заводы и бойни.

4.6 Новые режимы теплопередачи

Традиционные режимы нагрева и приготовления пищи в термовоздушных шкафах или путем контакта с нагретыми поверхностями теперь дополнены новыми высокоэффективными режимами, основанными на электротехнологиях. Эти методы включают инфракрасное, высокочастотное и микроволновое излучение, а также омический и индукционный нагрев.

Принципы, лежащие в основе этих различных режимов теплопередачи, значительно различаются от одного к другому, но все они разработаны для быстрого и эффективного нагрева продукта, при этом соблюдая критерии вкуса и питательности.

Основные преимущества этих технологий демонстрируются на следующих примерах:

  • высокий выход энергии (до 95 процентов)
  • прямой нагрев без промежуточной жидкости
  • быстрое время отклика при запуске, остановке и настройке
  • точная регулировка температуры
  • процессы приготовления без масла
  • минимальная потеря массы продукта

4.6.1 Инфракрасное излучение

В технологии обогрева инфракрасным излучением

используются электрические резисторы и / или керамические элементы из природного газа, которые нагреваются до необходимой температуры (несколько сотен градусов Цельсия), чтобы они испускали желаемый тип излучения, будь то короткое, среднее или длинноволновый ИК. Основная характеристика ИК-излучения заключается в том, что он обычно поглощается поверхностью продукта, вызывая быстрое повышение температуры.

- Применение: приготовление и жарка мяса.Эта технология представляет собой интересную альтернативу традиционным методам, в которых используются печи с горячим воздухом или грили на масляной основе.
- Ограничения: IR идеально подходит для обработки поверхностей и нагрева продуктов, расположенных тонкими слоями. Он не может нагревать толстые изделия равномерно и даже может вызвать термическое разложение.

Пример промышленного применения
Промышленное применение обработки инфракрасным излучением в нескольких секторах, охватываемых данным руководством, проиллюстрировано в следующем примере.

Инфракрасное излучение (ИК) - Мясоперерабатывающая промышленность

Тип деятельности: предприятие по переработке птицы в Германии и предприятие по переработке мяса в Нидерландах
Применение: приготовление куриного филе и свиных ребрышек
Дата размещения: 1998 год
Экономические данные: нет данных

Результаты


- Приготовление куриного филе: счет за электроэнергию был сокращен на 78 процентов (годовая выгода в размере 68 200 долларов США), а производственная мощность увеличилась вдвое (500 кг / час вместо 250 кг / час).
- Приготовление свиных ребрышек: счет за электроэнергию был снижен на 67 процентов (годовая выгода в размере 137 400 долларов США), а производственные мощности увеличились на 35 процентов (950 кг / час по сравнению с 700 кг / час).

Технологические преимущества: при использовании инфракрасного излучения энергия передается непосредственно на продукт, что исключает необходимость в промежуточной жидкости, как в обычном бройлере. Операция выполняется быстрее и ее легче контролировать. Кроме того, приготовление с использованием инфракрасного излучения не требует масла, которое необходимо регулярно заменять в традиционных процессах, что еще больше снижает затраты.

4.6.2 СВЧ и высокочастотное излучение

Эти электротехнологии позволяют нагревать, напрямую и быстро, без посредников, такие плохо проводящие вещества, как продукты переработки сельскохозяйственной продукции. Хотя на практике они дают очень разные результаты, обе технологии основаны на одном и том же принципе: переменное электрическое поле стимулирует движение молекул (особенно воды и жиров), которое вызывает тепло. Технологии существуют в виде непрерывных приложений в форме туннелей и в виде периодических (или периодических) приложений в виде закрытых камер, и их можно приобрести у нескольких поставщиков оборудования.

Характеристики обработки, включая равномерность нагрева, зависят от природы, формы и толщины продукта. Предварительные испытания на пилотном предприятии необходимы для определения оптимальных условий эксплуатации. Среди современных технологических решений мы обнаруживаем, что прерывистое микроволновое (MW) или высокочастотное воздействие предотвращает перегрев продукта, а перемещение продукта в камере способствует равномерности обработки.
- Применение: темперирование и приготовление пищевых продуктов, бактериальный контроль в замороженных продуктах (мясо, рыба), пастеризация фасованных продуктов (полуфабрикаты).

Примеры промышленного применения
Промышленное применение СВЧ-радиационной обработки в нескольких секторах, охватываемых данным руководством, проиллюстрировано следующими примерами.

Обработка микроволновым излучением (MW) - Мясоперерабатывающая промышленность (первый пример)

Тип деятельности: предприятие по переработке индейки в США
Применение: темперирование замороженных индюков перед переработкой
Дата размещения: нет данных
Экономические данные: нет данных

Результаты


Традиционные методы темперирования мякоти снижают массу: при использовании горячего воздуха уменьшение составляет примерно от 1 до 3 процентов, а при процессах на основе горячей воды - до 5 процентов.Эта потеря веса незначительна, когда мясо закаляется с помощью радиационной обработки МВ.

Технологические преимущества
Во время лечения СВЧ-излучением вся энергия поглощается мясом. Нет потерь энергии из-за необходимости нагревать промежуточную жидкость, как в традиционных методах на основе горячего воздуха и масла, а продолжительность обработки значительно сокращается.

Обработка микроволновым излучением (MW) - мясоперерабатывающая промышленность

Тип деятельности: мясоперерабатывающий завод в США
Применение: темперирование замороженных четвертинок перед нарезкой и их нарезка
Дата размещения: нет данных
Экономические данные: нет данных

Результаты
- При использовании традиционных методов (камера темперирования) для повышения температуры до -2 ° C потребовалось от 2 до 5 дней.Благодаря технологии MW время сократилось до нескольких минут, что повысило гибкость управления производством.
- Потери продукта во время операций нарезки и резки сократились на 20 процентов благодаря лучшему контролю температуры и более равномерной температуре продукта.

Технологические преимущества
То же, что и в предыдущем примере.

4.6.3 Омический нагрев

Омический нагрев, также известный как джоулев или резистивный нагрев, заключается в пропускании электрического тока непосредственно через нагреваемый предмет.Его можно применять к жидкостям (при условии, что они обладают достаточной проводимостью), которые обычно трудно обрабатывать (термочувствительные, очень вязкие, грязные и т. Д.), И позволяет быстро нагревать большие объемы с большим контролем.

Недавний успех в разработке омической обработки жидкостей привел к появлению на рынке оборудования первого поколения и положил начало работам по омической варке мясных продуктов.

- Применение: нагревание и стерилизация молока, фруктовых соков, пива и мясных соусов.

- Ограничения: В настоящее время кажется, что эту технологию очень сложно применить к твердым веществам, таким как куски мяса. Однако недавно были получены очень многообещающие результаты при испытаниях эмульсий ветчины: повышение качества продукта при одновременном сокращении времени приготовления на целых 75 процентов.

4.6.4 Индукционный нагрев

При нагревании за счет электромагнитной индукции изделие помещается в изменяющееся магнитное поле. Это создает в материале токи Фуко (вихревые), которые вызывают нагрев Джоуля.С технической точки зрения тепло может быть приложено непосредственно к продукту, который нагревает его изнутри, или косвенно к окружающей крышке из металла или другого материала, нагревая его за счет индукции. Низкая инерция системы позволяет точно контролировать температуру.

- Область применения: нагревание и стерилизация жидкостей (молоко, фруктовые соки), теста и паст.

Пример промышленного применения
Промышленное применение индукционного нагрева в одном из секторов, рассматриваемых в данном руководстве, проиллюстрировано в следующем примере.

Индукционный нагрев - Молочная промышленность

Тип бизнеса: молочный завод в Канаде
Применение: высокотемпературная пастеризация (процесс сверхвысокой температуры [UHT])
Дата внедрения: 1996
Стоимость инвестиций: 855 000 долларов США (пастеризатор UHT)
Срок окупаемости: 3,3 года

Результаты


Снижение энергопотребления, в результате чего чистая годовая экономия составляет 259 000 долларов США.

Технологические преимущества
По сравнению с традиционными методами пастеризации, использующими тепловую энергию парового котла, индукционный процесс на 17 процентов эффективнее.

4.7 Холодная пастеризация и бактериальный контроль

Пастеризация пищевого продукта - это процесс уничтожения или дезактивации микроорганизмов, которые могут повлиять на качество. В зависимости от продукта и используемой технологии классический процесс заключается в нагревании продукта до температуры от 60 ° C для пива до 72 ° C для молока или даже выше, до или после кондиционирования продукта в пластинчатом охладителе или туннельный пастеризатор. Однако пастеризация в горячем процессе имеет недостаток, заключающийся в том, что она является основным потребителем энергии, и она может влиять на органолептические свойства (в основном вкус) и пищевую ценность продукта.

Чтобы избежать этих проблем, все новые методы обработки холодом, разработанные в последние годы, имеют общую черту быстрого сокращения микробного сообщества при умеренной температуре. Эти методы находят широкое применение в агроперерабатывающей промышленности, от пастеризации продуктов до дезинфекции. Ожидается, что со временем их развертывание получит широкое признание в Канаде.

Более продвинутые методы, такие как высокое давление, ультрафиолетовое излучение, микрофильтрация и ультрафильтрация, уже используются, а в ближайшие несколько лет использование других технологий, таких как электронные пучки, магнитные и электрические поля, будет расширяться.

Основные преимущества методов холодной пастеризации заключаются в следующем:

  • снижение потребления воды и энергии
  • значительное продление сроков хранения обработанных продуктов
  • отсутствие разложения продукта под действием тепла (вкус остается очень близким или даже идентичным вкусу необработанного продукта, сохранение и стабилизация содержания витаминов и т. Д.)

4.7.1 Микрофильтрация и ультрафильтрация

Микрофильтрация и ультрафильтрация - это методы мембранной фильтрации, позволяющие выборочно отделять бактерии и другие материалы.Продаваемые в Канаде, они уже используются в молочной промышленности и производстве напитков (пиво и фруктовые соки) как для пастеризации, так и для осветления жидкостей. Согласовав размер пор мембраны с обрабатываемым продуктом, эти две операции могут даже выполняться одновременно, что приводит к значительной экономии энергии, поскольку устраняется один из этапов процесса.

- Области применения: пастеризация продуктов и борьба с водными бактериями

4.7.2 Лечение под высоким давлением (гипербарическое)

Обработка под высоким давлением или гипербарией заключается в воздействии на продукт, независимо от того, упакован он или нет, под высоким гидростатическим давлением для уничтожения патогенов и микроорганизмов.В настоящее время эту технологию можно применять для жидкостей (фруктовые соки) и некоторых твердых веществ (пюре, желе, мясных деликатесов). Широкое распространение он получил только в Японии.

- Применение: В секторе переработки фруктов этот метод сохраняет все качества свежих фруктов в течение примерно одного месяца.

Показывает некоторый потенциал для переработки жидкого молока и сыра. Тем не менее, продолжается работа по контролю его воздействия на натуральные ферменты в молоке и текстуру конечного продукта.

- Возможности: Использование высокого давления позволяет создавать продукты с интересными характеристиками текстуры, внешнего вида и вкуса. Это также улучшает производительность некоторых процессов, например, за счет введения растворенных веществ в продукты, а также замораживания и оттаивания продуктов с минимальным потоотделением.

Пример промышленного применения
Промышленное применение гипербарической обработки в одном из секторов, охватываемых данным руководством, проиллюстрировано в следующем примере.

Обработка под высоким давлением (гипербарическая) - Мясоперерабатывающая промышленность

Тип деятельности: мясоперерабатывающий завод в Испании (21 час в день)
Применение: пастеризация вареной и упакованной в вакуумной упаковке нарезанной ветчины (625 кг / час)
Дата ввода в эксплуатацию: 1998 год (новая производственная линия)
Стоимость инвестиций: 1,4 доллара США млн за барокамеру

Результаты
Ежегодный счет за электроэнергию был уменьшен примерно на 10 500 долларов (годовое потребление электроэнергии 26 кВт - 6300 часов при 0 долларах США.064 / кВтч).

Технологические преимущества
Выбор клиента основывался на трех критериях: сохранение органолептической целостности продукта; обеспечение срока хранения не менее одного месяца; низкая стоимость эксплуатации.

В некоторых случаях пастеризация методом холодного процесса может заменить пастеризацию в процессе нагрева, но не в этом случае. Производитель мог бы получить желаемый срок хранения путем нагревания продукта, но его органолептические качества были бы серьезно нарушены.

4.7.3 Ультрафиолетовая обработка

В Соединенных Штатах Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) недавно одобрило обработку ультрафиолетом (УФ) в качестве альтернативы пастеризации соков тепловым процессом. Эта обработка представляет большой интерес для производителей яблочного сока, у которых нет инфраструктуры для термической обработки небольших объемов продукции. Технология также одобрена для других соков, как свежих, так и концентрированных.

- Области применения: пастеризация соков и сыворотки (УФ-излучение высокой плотности) и борьба с бактериями, передающимися через воду

- Ограничения: УФ-технология может использоваться для относительно прозрачных жидкостей.Его нельзя использовать с молоком, потому что это может повлиять на его вкус. УФ-обработка сыворотки требует высокой интенсивности УФ-излучения, в то время как низкая интенсивность подходит для дезинфекции воды.

4.7.4 Лечение электрическими или магнитными полями

Недавние достижения в области электрических и магнитных полей (как правило, импульсов) показали, что эти методы могут дезактивировать микроорганизмы и микробиоту, что свидетельствует о реальном потенциале перерабатывающей промышленности.

- Применение: пастеризация многих продуктов, как жидких, так и твердых (мясные продукты, сыры, торты, фрукты и овощи, продукты на основе яиц, пюре, соусы, молоко, соки, сиропы), обработка продуктов в непрозрачной упаковке.

- Ограничения: несмотря на то, что они быстро развиваются и демонстрируют большой потенциал, эти процессы находятся на начальной стадии разработки (фазы разработки и тонкой настройки).

4.7.5 Электронно-лучевая обработка

В Соединенных Штатах FDA недавно одобрило использование гамма-лучей (от источников кобальта-60 или цезия-137), рентгеновского излучения ниже пяти мегаэлектронвольт (МэВ) и электронных пучков ниже 10 МэВ.

Электронно-лучевая технология, используется более 40 лет для стерилизации медицинского оборудования.В последние годы компания добилась значительных успехов, расширив свой потенциал для стерилизации и пастеризации широкого спектра продуктов в агроперерабатывающей промышленности. Также считается наиболее перспективной из технологий пастеризации на основе ионизирующего излучения.

- Область применения: переработка мяса, молочных продуктов и фасованных пищевых продуктов.

- Ограничения: Основное препятствие, которое должна преодолеть эта технология, - это общественное мнение об облученных пищевых продуктах.

4.8 Высокоэффективные клапаны гомогенизации

Гомогенизация заключается в разделении глобул, взвешенных в жидкости, на более мелкие частицы для создания более однородной и стабильной смеси. Работа происходит в гомогенизаторе, в котором жидкость проталкивается через отверстия или клапаны под давлением.

В молочной промышленности целью гомогенизации является разбиение шариков молочного жира на более мелкие частицы для их равномерного распределения по всему молоку.Этот процесс стабилизирует продукт и, в частности, не дает жирным веществам подниматься на поверхность в виде сливок. Он также придает физические и органолептические свойства, которые делают продукт привлекательным на рынке жидкого и промышленного молока.

В последние годы производители разработали новые поколения высокоэффективных клапанов, которые работают при более низком давлении, снижая потребление электроэнергии оборудованием на 15–30 процентов при сохранении того же качества гомогенизации.

- Применение: гомогенизация молока.

- Возможности: использование высокоэффективных клапанов гомогенизации позволяет либо снизить потребление энергии за счет снижения давления до 1100 фунтов на квадратный дюйм, например, или повысить качество гомогенизации, продолжая работать при традиционном более высоком давлении 1350 фунтов на квадратный дюйм. , тем самым увеличивая срок хранения гомогенизированного молока.

Пример промышленного применения
Промышленное применение высокоэффективных клапанов гомогенизации в одном из секторов, охватываемых данным руководством, показано в следующем примере.

Высокоэффективные клапаны гомогенизации - Молочная промышленность

Тип бизнеса: молочное предприятие в Канаде (12 часов в день)
Применение: гомогенизация 20000 л / час 3,25-процентного молока
Дата внедрения: 2001
Стоимость инвестиций: 12 900 долларов США
Срок окупаемости: 2,5 года

Результаты


Для того же качества гомогенизации снижение рабочего давления (со 170 бар до 114 бар) и электрической мощности (со 111 кВт до 75 кВт) привело к ежегодному снижению потребления электроэнергии на 132 500 МВтч (5300 долларов США).

Методология


Проект заключается в замене оригинальных клапанов на высокоэффективные клапаны на существующей машине. Это, вероятно, наиболее распространенная ситуация, поскольку оборудование для гомогенизации имеет очень долгий срок службы.

Технологические преимущества
Высокоэффективные клапаны работают при более низком давлении, снижая потребление электроэнергии оборудованием. Помимо прямого снижения потребления электроэнергии, использование более эффективных клапанов также способствует ограничению пикового энергопотребления объекта.

Сноски

Сноска 15

Использование конденсационных экономайзеров ограничено системами, в которых используется топливо, не содержащее серы, такое как природный газ, во избежание опасности кислотной коррозии.

Вернуться к сноске 15 реферер

Сноска 16

Биогаз может быть получен в результате анаэробной обработки сточных вод предприятия или поступать с близлежащей свалки.

Вернуться к сноске 16 реферер

Сноска 17

Различные типы анаэробных реакторов различаются по рабочей температуре, типу и потоку обрабатываемых отходов.Высокотемпературные реакторы (выше 30 90 479 o 90 480 C) занимают меньше времени (менее трех суток). Системы с высокой пропускной способностью (т. Е. Обработка более 10 м 3 на кубический метр объема реактора в день) обычно обрабатывают жидкие отходящие потоки, в то время как установки с более ограниченной производительностью обрабатывают твердые или целлюлозные отходы и требуют более длительных периодов времени.

Вернуться к сноске 17 реферер

Сноска 18

Сжигание биогаза не считается источником выбросов парниковых газов.

Вернуться к сноске 18 реферер

Содержание

4 Энергоэффективность | Энергетическое будущее Америки: технологии и трансформация

AISI. 2005. Экономия одного барреля нефти на тонну. Вашингтон, округ Колумбия: AISI. Октябрь.

Аламгир М. и А.М. Састры. 2008. Эффективные аккумуляторные батареи для транспортных средств. Документ SAE 2008-21-0017. SAE Convergence, Детройт, Мичиган, октябрь.

Ан, Ф., и Дж. ДеЧикко. 2007. Тенденции в компромиссах с технической эффективностью для парка легковых автомобилей США. Серия технических статей № 2007-01-1325. Общество Автомобильных Инженеров. Апрель.

Apte, J., and D. Arasteh. 2006. Связанное с окнами потребление энергии в жилом и коммерческом строительстве в США. LBNL-60146. Беркли, Калифорния: Национальная лаборатория Лоуренса Беркли. Доступно на http://gaia.lbl.gov/btech/papers/60146.pdf.

Бейли О. и Э. Уоррелл. 2005. Чистые энергетические технологии: предварительная инвентаризация потенциала производства электроэнергии.Отчет LBNL-57451. Беркли, Калифорния: Национальная лаборатория Лоуренса Беркли. Сентябрь.

Bandivadekar, A., K. Bodek, L. Cheah, C. Evans, T. Groode, J. Heywood, E. Kasseris, K. Kromer и M. Weiss. 2008. На пути к 2035 году: сокращение потребления нефти и выбросов парниковых газов на транспорте. Отчет Лаборатории энергетики и окружающей среды, Массачусетский технологический институт.

Battelle (Мемориальный институт Battelle). 2002. На пути к устойчивой цементной промышленности: изменение климата.Тема 8 независимого исследования, проведенного по заказу Всемирного совета предпринимателей по устойчивому развитию. Колумбус, Огайо: Мемориальный институт Battelle.

Берри, Линда и Мартин Швейцер. 2003. Метаоценка Национальной программы помощи при утеплении на основе государственных исследований, 1993–22002 гг. ORNL / CON-488. Ок-Ридж, штат Теннесси: Национальная лаборатория Ок-Ридж. Февраль.

Брукс, С., Б. Элсвик и Р. Нил Эллиотт. 2006a. Комбинированное производство тепла и электроэнергии: устранение разрыва между рынками и коммунальными услугами. Взаимосвязь и тарифная практика (Часть I).Американский совет по энергоэффективной экономике (ACEEE), технический отчет IE062. Вашингтон, округ Колумбия: ACEEE.

Брукс, С., М. Элдридж и Р. Нил Эллиотт. 2006b. Комбинированное производство тепла и электроэнергии: устранение разрыва между рынками и коммунальными услугами. Взаимосвязь и тарифная практика (Часть II). Американский совет по энергоэффективной экономике (ACEEE), технический отчет IE063. Вашингтон, округ Колумбия: ACEEE.

Браун, М.А. 2001. Сбои рынка и барьеры как основа для политики чистой энергии.Энергетическая политика 29: 1197-1207.

Браун, М.А., и С. Чендлер. 2008. Путаница в управлении: как законодательные акты, налоговая политика и нормативные акты препятствуют использованию экологически чистых энергетических технологий. Обзор законодательства и политики Стэнфорда 19: 427-509.

Браун, М.А., Дж. Чендлер, М.В. Лапса, Б.К. Sovacool. 2007. Углеродная блокировка: препятствия на пути внедрения технологий смягчения последствий изменения климата. ORNL / TM-2007/124. Ок-Ридж, штат Теннесси: Национальная лаборатория Ок-Ридж.

.